scholarly journals The structural aspects of neural dynamics and information flow

2022 ◽  
Vol 27 (1) ◽  
pp. 1
Author(s):  
JunHyuk Woo ◽  
Kiri Choi ◽  
Soon Ho Kim ◽  
Kyungreem Han ◽  
MooYoung Choi
2021 ◽  
Author(s):  
Sydney C. Weiser ◽  
Brian R. Mullen ◽  
Desiderio Ascencio ◽  
James B. Ackman

Recording neuronal group activity across the cortical hemispheres from awake, behaving mice is essential for understanding information flow across cerebral networks. Video recordings of cerebral function comes with challenges, including optical and movement-associated vessel artifacts, and limited references for time series extraction. Here we present a data-driven workflow that isolates artifacts from calcium activity patterns, and segments independent functional units across the cortical surface. Independent Component Analysis utilizes the statistical interdependence of pixel activation to completely unmix signals from background noise, given sufficient spatial and temporal samples. We also utilize isolated signal components to produce segmentations of the cortical surface, unique to each individual’s functional patterning. Time series extraction from these maps maximally represent the underlying signal in a highly compressed format. These improved techniques for data pre-processing, spatial segmentation, and time series extraction result in optimal signals for further analysis.


2019 ◽  
Author(s):  
Lionel Barnett ◽  
Suresh D. Muthukumaraswamy ◽  
Robin L. Carhart-Harris ◽  
Anil K. Seth

AbstractNeuroimaging studies of the psychedelic state offer a unique window onto the neural basis of conscious perception and selfhood. Despite well understood pharmacological mechanisms of action, the large-scale changes in neural dynamics induced by psychedelic compounds remain poorly understood. Using source-localised, steady-state MEG recordings, we describe changes in functional connectivity following the controlled administration of LSD, psilocybin and low-dose ketamine, as well as, for comparison, the (non-psychedelic) anticonvulsant drug tiagabine. We compare both undirected and directed measures of functional connectivity between placebo and drug conditions. We observe a general decrease in directed functional connectivity for all three psychedelics, as measured by Granger causality, throughout the brain. These data support the view that the psychedelic state involves a breakdown in patterns of functional organisation or information flow in the brain. In the case of LSD, the decrease in directed functional connectivity is coupled with an increase in undirected functional connectivity, which we measure using correlation and coherence. This surprising opposite movement of directed and undirected measures is of more general interest for functional connectivity analyses, which we interpret using analytical modelling. Overall, our results uncover the neural dynamics of information flow in the psychedelic state, and highlight the importance of comparing multiple measures of functional connectivity when analysing time-resolved neuroimaging data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hua Tang ◽  
Ramon Bartolo ◽  
Bruno B. Averbeck

AbstractPrefrontal cortex is critical for cognition. Although much is known about the representation of cognitive variables in the prefrontal cortex, much less is known about the spatio-temporal neural dynamics that underlie cognitive operations. In the present study, we examined information timing and flow across the lateral prefrontal cortex (LPFC), while monkeys carried out a two-armed bandit reinforcement learning task in which they had to learn to select rewarding actions or rewarding objects. When we analyzed signals independently within subregions of the LPFC, we found a task-specific, caudo-rostral gradient in the strength and timing of signals related to chosen objects and chosen actions. In addition, when we characterized information flow among subregions, we found that information flow from action to object representations was stronger from the dorsal to ventral LPFC, and information flow from object to action representations was stronger from the ventral to dorsal LPFC. The object to action effects were more pronounced in object blocks, and also reflected learning specifically in these blocks. These results suggest anatomical segregation followed by the rapid integration of information within the LPFC.


2021 ◽  
Author(s):  
Amitabh Dube ◽  
Umesh Kumar ◽  
Kapil Gupta ◽  
Jitendra Gupta ◽  
Bhoopendra Patel ◽  
...  

The Human Mind, functional aspect of Human Brain, has been envisaged to be working on the tenets of Chaos, a seeming order within a disorder, the premise of Universe. The armamentarium of Human Mind makes use of distributed neuronal networks sub-serving Sensorial Mechanisms, Mirror Neurone System (MNS) and Motor Mechanisms etching a stochastic trajectory on the virtual phase-space of Human Mind, obeying the ethos of Chaos. The informational sensorial mechanisms recruit attentional mechanisms channelising through the window of chaotic neural dynamics onto MNS that providing algorithmic image information flow along virtual phase- space coordinates concluding onto motor mechanisms that generates and mirrors a stimulus- specific and stimulus-adequate response. The singularity of self-iterating fractal architectonics of Event-Related Synchrony (ERS), a Power Spectral Density (PSD) precept of electroencephalographic (EEG) time-series denotes preferential and categorical inhibition gateway and an Event-Related Desynchrony (ERD) represents event related and locked gateway to stimulatory/excitatory neuronal architectonics leading to stimulus-locked and adequate neural response. The contextual inference in relation to stochastic phase-space trajectory of self- iterating fractal of Off-Center α ERS (Central)-On-Surround α ERD-On Surround θ ERS document efficient neural dynamics of working memory., across patterned modulation and flow of the neurally coded information.


Author(s):  
C. Wiencke ◽  
A. Lauchli

Osmoregulatory mechanisms in algae were investigated mainly from a physiological point of view (KAUSS 1977, HELLEBUST 1976). In Porphyra two osmotic agents, i. e. floridoside/isofloridoside (KAUSS 1968) and certain ions, such as K+ and Na+(EPPLEY et al. 1960) are considered for osmotic balance. Accumulations of ions (particularly Na+) in the cytoplasm during osmotic adaptation is improbable, because the activity of enzymes is generally inhibited by high ionic concentrations (FLOWERS et al. 1977).The cellular organization of Porphyra was studied with special emphasis on the development of the vacuolar system under different hyperosmotic conditions. Porphyra was cultivated at various strengths of the culture medium ASP 12 (PROVASOLI 1961) ranging from normal to 6 times concentrated (6x) culture medium. Por electron microscopy freeze fracturing was used (specimens fixed in 2% glutaraldehyde and incubated in 30% glycerol, preparation in a BALZERS BA 360 M apparatus), because chemical fixation gave poor results.


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


Author(s):  
J.R. Parsons ◽  
C.W. Hoelke

The direct imaging of a crystal lattice has intrigued electron microscopists for many years. What is of interest, of course, is the way in which defects perturb their atomic regularity. There are problems, however, when one wishes to relate aperiodic image features to structural aspects of crystalline defects. If the defect is inclined to the foil plane and if, as is the case with present 100 kV transmission electron microscopes, the objective lens is not perfect, then terminating fringes and fringe bending seen in the image cannot be related in a simple way to lattice plane geometry in the specimen (1).The purpose of the present work was to devise an experimental test which could be used to confirm, or not, the existence of a one-to-one correspondence between lattice image and specimen structure over the desired range of specimen spacings. Through a study of computed images the following test emerged.


Author(s):  
C. H. Haigler ◽  
A. W. Roberts

Tracheary elements, the water-conducting cells in plants, are characterized by their reinforced walls that became thickened in localized patterns during differentiation (Fig. 1). The synthesis of this localized wall involves abundant secretion of Golgi vesicles that export preformed matrix polysaccharides and putative proteins involved in cellulose synthesis. Since the cells are not growing, some kind of endocytotic process must also occur. Many researchers have commented on where exocytosis occurs in relation to the thickenings (for example, see), but they based their interpretations on chemical fixation techniques that are not likely to provide reliable information about rapid processes such as vesicle fusion. We have used rapid freezing to more accurately assess patterns of vesicle fusion in tracheary elements. We have also determined the localization of calcium, which is known to regulate vesicle fusion in plant and animal cells.Mesophyll cells were obtained from immature first leaves of Zinnia elegans var. Envy (Park Seed Co., Greenwood, S.C.) and cultured as described previously with the following exceptions: (a) concentration of benzylaminopurine in the culture medium was reduced to 0.2 mg/l and myoinositol was eliminated; and (b) 1.75ml cultures were incubated in 22 x 90mm shell vials with 112rpm rotary shaking. Cells that were actively involved in differentiation were harvested and frozen in solidifying Freon as described previously. Fractures occurred preferentially at the cell/planchet interface, which allowed us to find some excellently-preserved cells in the replicas. Other differentiating cells were incubated for 20-30 min in 10(μM CTC (Sigma), an antibiotic that fluoresces in the presence of membrane-sequestered calcium. They were observed in an Olympus BH-2 microscope equipped for epi-fluorescence (violet filter package and additional Zeiss KP560 barrier filter to block chlorophyll autofluorescence).


1988 ◽  
Vol 19 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Karen E. Pollock ◽  
Richard G. Schwartz

The relationship between syllabic structure and segmental development was examined longitudinally in a child with a severe phonological disorder. Six speech samples were collected over a 4-year period (3:5 to 7:3). Analyses revealed gradual increases in the complexity and diversity of the syllable structures produced, and positional preferences for sounds within these forms. With a strong preference for [d] and [n] at the beginning of syllables, other consonants appeared first at the end of syllables. Implications for clinical management of phonological disorders include the need to consider both structural position and structural complexity in assessing segmental skills and in choosing target words for intervention.


Sign in / Sign up

Export Citation Format

Share Document