Opposite expression patterns of Sonic hedgehog and Indian hedgehog are associated with aberrant methylation status of their promoters in colorectal cancers

Pathology ◽  
2010 ◽  
Vol 42 (6) ◽  
pp. 553-559 ◽  
Author(s):  
Xiangsheng Fu ◽  
Xiatong Yang ◽  
Jing Li ◽  
Xiaoxiao Tian ◽  
Jun Cai ◽  
...  
2021 ◽  
pp. 1-6
Author(s):  
Ben Kang ◽  
Hyun Seok Lee ◽  
Seong Woo Jeon ◽  
Soo Yeun Park ◽  
Gyu Seog Choi ◽  
...  

BACKGROUND: Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is characterized by different pathways of carcinogenesis and is a heterogeneous disease with diverse molecular landscapes that reflect histopathological and clinical information. Changes in the DNA methylation status of colon epithelial cells have been identified as critical components in CRC development and appear to be emerging biomarkers for the early detection and prognosis of CRC. OBJECTIVE: To explore the underlying disease mechanisms and identify more effective biomarkers of CRC. METHODS: We compared the levels and frequencies of DNA methylation in 11 genes (Alu, APC, DAPK, MGMT, MLH1, MINT1, MINT2, MINT3, p16, RGS6, and TFPI2) in colorectal cancer and its precursor adenomatous polyp with normal tissue of healthy subjects using pyrosequencing and then evaluated the clinical value of these genes. RESULTS: Aberrant methylation of Alu, MGMT, MINT2, and TFPI2 genes was progressively accumulated during the normal-adenoma-carcinoma progression. Additionally, CGI methylation occurred either as an adenoma-associated event for APC, MLH1, MINT1, MINT31, p16, and RGS6 or a tumor-associated event for DAPK. Moreover, relatively high levels and frequencies of DAPK, MGMT, and TFPI2 methylation were detected in the peritumoral nonmalignant mucosa of cancer patients in a field-cancerization manner, as compared to normal mucosa from healthy subjects. CONCLUSION: This study identified several biomarkers associated with the initiation and progression of CRC. As novel findings, they may have important clinical implications for CRC diagnostic and prognostic applications. Further large-scale studies are needed to confirm these findings.


2004 ◽  
Vol 24 (4) ◽  
pp. 1640-1648 ◽  
Author(s):  
F. Gaudet ◽  
W. M. Rideout ◽  
A. Meissner ◽  
J. Dausman ◽  
H. Leonhardt ◽  
...  

ABSTRACT The methylation of intracisternal A-type particle (IAP) sequences is maintained during mouse embryogenesis. Methylation suppresses IAP expression and the potential for mutagenesis by retrotransposition, but it is not clear how methylation of these elements is maintained during the embryonic stages when the bulk of the genome is being demethylated. It has been suggested that the high levels of DNA methyltransferase-1 (Dnmt1) present during cleavage could be important for keeping IAPs methylated. To test this hypothesis, we combined mutant alleles of Dnmt1 with an agouti allele (Aiapy ), which provided a coat color readout for the methylation status of the IAP insertion in the agouti locus. We found that reduction in Dnmt1 levels directly impacted methylation at this locus, leading to stable transcriptional activation of the agouti gene in the adult. Specifically, the short maternal Dnmt1 protein was important in maintaining methylation at the Aiapy locus in cleavage embryos, whereas the longer Dnmt1 isoform found in somatic cells was important in maintaining IAP methylation during the postimplantation stage. These results underscore the importance of maintaining proper maintenance of methylation patterns during gestation and suggest that interference with this process may stably affect gene expression patterns in the adult and may have profound phenotypic consequences.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


2012 ◽  
Vol 27 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Annamaria La Torre ◽  
Lucia Anna Muscarella ◽  
Paola Parrella ◽  
Teresa Balsamo ◽  
Michele Bisceglia ◽  
...  

Disturbances in the epigenetic landscape by aberrant methylation of CpG islands can lead to inactivation of cancer-related genes in solid tumors. We analyzed the promoter methylation status of 6 genes previously reported as cancer-specific methylated (MCAM, SSBP2, NISCH, B4GALT1, KIF1A and RASSF1A) in 38 neural crest-derived tumors by quantitative methylation-specific real-time PCR (QMSP). The results demonstrated that the determination of the methylation status of RASSF1A is able to distinguish between normal and tumor samples in cutaneous melanomas, lung carcinoids and small bowel carcinoids. MCAM methylation levels were significantly higher in lung carcinoids tumors (p=0.001), suggesting that this alteration may represent a molecular biomarker in this tumor type.


2020 ◽  
Author(s):  
Jie Mei ◽  
Yun Cai ◽  
Rui Xu ◽  
Xuejing Yang ◽  
Weijian Zhou ◽  
...  

AbstractBackgroundImmune checkpoints play crucial roles in immune escape of cancer cells. However, the exact prognostic values of expression and methylation of programmed death 1 (PD-1), programmed death-ligand 1 (PD-L1) and PD-L2 in low-grade glioma (LGG) have not been defined yet.MethodsA total of 514 LGG samples from TCGA dataset containing both PD-1, PD-L1 and PD-L2 expression, DNA methylation, and survival data were enrolled into our study. The clinical significance of PD-1/PD-Ls expression and methylation in LGG were explored. Besides, the correlation between PD-1/PD-Ls expression and methylation with the infiltration levels of tumor-infiltrating immune cells (TIICs) was assessed. Moreover, GO enticement analysis of PD-1/PD-Ls co-expressed genes was performed as well. R 3.6.2 and GraphPad Prism 8 were applied as main tools for the statistical analysis and graphical exhibition.ResultsPD-1/PD-Ls had distinct co-expression patterns in LGG tissues. The expression and methylation status of PD-1/PD-Ls seemed to be various in different LGG subtypes. Besides, upregulated PD-1/PD-Ls expression and hypo-methylation of PD-1/PD-Ls were associated with worse survival in LGG patients. In addition, PD-1/PD-Ls expression was revealed to be positively associated with TIICs infiltration, while their methylation was negatively associated with TIICs infiltration. Moreover, the PD-1/PDLs correlated gene profiles screening and Gene Ontology (GO) enrichment analysis uncovered that PD-1/PDLs and their positively correlated gene mainly participated in immune response related biological processes.ConclusionsHigh expression and hypo-methylation of PD-1/PD-Ls significantly correlated with unfavorable survival in LGG patients, suggesting LGG patients may benefit from PD1/PD-Ls checkpoint inhibitors treatment.


Author(s):  
Mohsen Ahmadi ◽  
Negin Saffarzadeh ◽  
Mohammad Amin Habibi ◽  
Fatemeh Hajiesmaeili ◽  
Nima Rezaei

AbstractNovel coronavirus disease (COVID-19) pandemic has become a global health emergency. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with angiotensin-converting enzyme 2 (ACE2) to enter the cells and infects diverse human tissues. It has been reported that a few conditions, including cancer, predispose individuals to SARS-CoV-2 infection and severe form of COVID-19. These findings led us to evaluate the susceptibility of colon adenocarcinoma (COAD) patients to SARS-CoV-2 infection by investigation of ACE2 expression in their tumor tissues. The expression analysis revealed that both mRNA and protein levels of ACE2 had increased in colon cancer samples than normal group. Next, the prognosis analysis has indicated that the upregulation of ACE2 was not correlated with patient survival outcomes. Further assessment displayed the hypomethylation of the ACE2 gene promoter in COAD patients. Surprisingly, this methylation status has a strong negative correlation with ACE2 gene expression. The functional enrichment analysis of the genes that had similar expression patterns with ACE2 in colon cancer tissues demonstrated that they mainly enriched in Vitamin digestion and absorption, Sulfur relay system, and Fat digestion and absorption pathways. Finally, we found that ACE2 gene expression had a significant association with the immune cell infiltration levels in COAD patients. In conclusion, it has plausible that COAD patients are more likely to be infected with SARS-CoV-2 and experience severe injuries. Moreover, COVID-19 would bring unfavorable survival outcomes of patients with colon cancer by the way of immune cell infiltration linked process. The present study highlights the importance of preventive actions for COAD patients during the COVID-19 pandemic.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2763-2772 ◽  
Author(s):  
M. Ramalho-Santos ◽  
D.A. Melton ◽  
A.P. McMahon

The gastrointestinal tract develops from the embryonic gut, which is composed of an endodermally derived epithelium surrounded by cells of mesodermal origin. Cell signaling between these two tissue layers appears to play a critical role in coordinating patterning and organogenesis of the gut and its derivatives. We have assessed the function of Sonic hedgehog and Indian hedgehog genes, which encode members of the Hedgehog family of cell signals. Both are expressed in gut endoderm, whereas target genes are expressed in discrete layers in the mesenchyme. It was unclear whether functional redundancy between the two genes would preclude a genetic analysis of the roles of Hedgehog signaling in the mouse gut. We show here that the mouse gut has both common and separate requirements for Sonic hedgehog and Indian hedgehog. Both Sonic hedgehog and Indian hedgehog mutant mice show reduced smooth muscle, gut malrotation and annular pancreas. Sonic hedgehog mutants display intestinal transformation of the stomach, duodenal stenosis (obstruction), abnormal innervation of the gut and imperforate anus. Indian hedgehog mutants show reduced epithelial stem cell proliferation and differentiation, together with features typical of Hirschsprung's disease (aganglionic colon). These results show that Hedgehog signals are essential for organogenesis of the mammalian gastrointestinal tract and suggest that mutations in members of this signaling pathway may be involved in human gastrointestinal malformations.


Epigenetics ◽  
2020 ◽  
Vol 15 (6-7) ◽  
pp. 684-701
Author(s):  
Guoqiao Chen ◽  
Xiaoxiao Fan ◽  
Yirun Li ◽  
Lifeng He ◽  
Shanjuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document