Production of water-containing polymer microcapsules by the complex emulsion/solvent evaporation technique. Effect of process variables on the microcapsule size distribution

1995 ◽  
Vol 12 (6) ◽  
pp. 627-638 ◽  
Author(s):  
A. Kentepozidou ◽  
C. Kiparissides
Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


2008 ◽  
Vol 2 (2) ◽  
Author(s):  
R. Asmatulu ◽  
A. Fakhari

Drug targeting systems are important research areas for many diseases treatments (e.g., cancer, nerve damage, heart and artery, diabetic, eye and other medical treatments). Currently, magnetic field, electric field, ultrasound, temperature, UV light and∕or mechanical force systems are considered more for research and development. Magnetic targeted drug delivery system is usually preferred because targeted systems improve the therapeutic index of drug molecules by minimizing the toxic side effects on healthy cells and tissues. In this study, magnetic nanoparticles (∼10nm) were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong base (ammonium hydroxide) and used for a drug delivery purposes. An oil-in-oil emulsion∕solvent evaporation technique was chosen for the synthesis of nanocomposite spheres. Percentages of magnetic nanoparticles (%5, %10, %20 and%30) and poly(D,L-lactide-co-glycolide) were combined together to produce nanocomposite particles with diameters of 500nmto1.2micronmeter. The effect of particle concentrations on nanocomposite particle size and distribution and morphology were investigated by using scanning electron microscopy (SEM) and laser light scattering (LLS). Additionally, external magnetic fields with various magnet distance, magnetic field, pump speed and solid contents were applied to the nanocomposite particles in a liquid media to find out the effect of variables for the targeting of drug carrying nanocomposite spheres.


2018 ◽  
Vol 6 (3) ◽  
pp. 17-31
Author(s):  
Abdul Hasan Sathali ◽  
Ramanathan M

The objective of the present work was to enhancedissolution and solubility of slightly water soluble ormeloxifene hydrochloride and formulate fast dissolving tablets. The research work was two-phase process, the first phase was to enhance the solubility and dissolution of ormeloxifene. For this object drugwas processed with different solid dispersion techniques like kneading, co precipitation, melting and solvent evaporation technique with


Sign in / Sign up

Export Citation Format

Share Document