scholarly journals Biodegradable Magnetic Nanocomposite Spheres Fabrication by O∕O Emulsion∕Solvent Evaporation Technique for Drug Delivery Purposes

2008 ◽  
Vol 2 (2) ◽  
Author(s):  
R. Asmatulu ◽  
A. Fakhari

Drug targeting systems are important research areas for many diseases treatments (e.g., cancer, nerve damage, heart and artery, diabetic, eye and other medical treatments). Currently, magnetic field, electric field, ultrasound, temperature, UV light and∕or mechanical force systems are considered more for research and development. Magnetic targeted drug delivery system is usually preferred because targeted systems improve the therapeutic index of drug molecules by minimizing the toxic side effects on healthy cells and tissues. In this study, magnetic nanoparticles (∼10nm) were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong base (ammonium hydroxide) and used for a drug delivery purposes. An oil-in-oil emulsion∕solvent evaporation technique was chosen for the synthesis of nanocomposite spheres. Percentages of magnetic nanoparticles (%5, %10, %20 and%30) and poly(D,L-lactide-co-glycolide) were combined together to produce nanocomposite particles with diameters of 500nmto1.2micronmeter. The effect of particle concentrations on nanocomposite particle size and distribution and morphology were investigated by using scanning electron microscopy (SEM) and laser light scattering (LLS). Additionally, external magnetic fields with various magnet distance, magnetic field, pump speed and solid contents were applied to the nanocomposite particles in a liquid media to find out the effect of variables for the targeting of drug carrying nanocomposite spheres.

Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 9004-9012 ◽  
Author(s):  
Jinghua Li ◽  
Yan Hu ◽  
Yanhua Hou ◽  
Xinkun Shen ◽  
Gaoqiang Xu ◽  
...  

An alternating magnetic field triggered nanocarrier for drug delivery is fabricated for dual modal imaging-guided thermo-chemo cancer therapy.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1832 ◽  
Author(s):  
Ylenia Jabalera ◽  
Francesca Oltolina ◽  
Ana Peigneux ◽  
Alberto Sola-Leyva ◽  
Maria P. Carrasco-Jiménez ◽  
...  

The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.


Author(s):  
Matteo Bruno Lodi ◽  
Alessandro Fanti

The combination of magnetic nanoparticles and a biocompatible material leads to the manufacturing of a multifunctional and remotely controlled platform useful for diverse biomedical issues. If a static magnetic field is applied, a magnetic scaffold behaves like an attraction platform for magnetic carriers of growth factors, thus being a potential tool to enhance magnetic drug delivery in regenerative medicine. To translate in practice this potential application, a careful and critical description of the physics and the influence parameter is required. This chapter covers the mathematical modeling of the process and assesses the problem of establishing the influence of the drug delivery system on tissue regeneration. On the other hand, if a time-varying magnetic field is applied, the magnetic nanoparticles would dissipate heat, which can be exploited to perform local hyperthermia treatment on residual cancer cells in the bone tissue. To perform the treatment planning, it is necessary to account for the modeling of the intrinsic nonlinear nature of the heat dissipation dynamic in magnetic prosthetic implants. In this work, numeric experiments to investigate the physiopathological features of the biological system, linked to the properties of the nanocomposite magnetic material, to assess its effectiveness as therapeutic agents are presented.


2004 ◽  
Vol 820 ◽  
Author(s):  
Ramazan Asmatulu ◽  
Richard.O. Claus ◽  
Judy S. Riffle ◽  
Michael Zalich

AbstractBiodegradable magnetic nanoparticles were synthesized using Poly(L-Lactic Acid) and magnetite nanoparticles (∼14 nm) at different dosages, and then these nanaoparticles (nanocomposites) and pure magnetic particles were targeted in external magnetic fields by changing the test parameters. The magnetic field test results showed that magnetic saturation, fluid speed, magnetic field distance and particle size were extremely effective for a magnetic guidance system that is needed for an effective drug delivery approach. Thus, it is assumed that such nanoparticles can carry drugs (chemotherapy) to be able to cure cancer tumors as well as many other diseases.


2016 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Sumit Durgapal ◽  
Sayantan Mukhopadhyay ◽  
Laxmi Goswami

Objective: The main purpose of this study is to prepare a floating micro articulated drug delivery system of ciprofloxacin by using non-aqueous solvent evaporation technique to increase the bioavailability and therapeutic effectiveness of the drug by prolonging its gastric residence time.Methods: Floating microparticles were prepared by using different low-density polymers such as ethyl cellulose and hydroxypropyl methylcellulose either alone or in combination with the aid of non-aqueous solvent evaporation technique. All the formulated microparticles were subjected to various evaluation parameters such as percentage yield, drug content, drug entrapment, rheological studies, floating characteristics and in vitro drug release studies.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. Results revealed that non-aqueous solvent evaporation technique is a suitable technique for the preparation of floating microspheres as most of the formulations were discrete and spherical in shape with a good yield of 65% to 85% and 15 to 22 h of floating duration with 90% of maximum percentage floating capacity shown by formulation FM9. Though, different drug-polymer ratios, as well as a combination of polymers, play a significant role in the variation of overall characteristics of formulations. Based on the data of various evaluation parameters such as particle size analysis, drug content, drug entrapment, rheological studies and in vitro drug release characteristics formulation FM9 was found to fulfil the criteria of ideal floating drug delivery system.Conclusion: Floating microparticles were successfully prepared, and from this study, it can be concluded that the developed floating microspheres of ciprofloxacin can be used for prolonged drug release in the stomach to improve the bioavailability and patient compliance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pascalin Tiam Kapen ◽  
Cédric Gervais Njingang Ketchate ◽  
Didier Fokwa ◽  
Ghislain Tchuen

Purpose For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery. Design/methodology/approach Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field. Findings It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force. Originality/value The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 145 ◽  
Author(s):  
Sérgio Veloso ◽  
Paula Ferreira ◽  
J. Martins ◽  
Paulo Coutinho ◽  
Elisabete Castanheira

Drug delivery nanosystems have been thriving in recent years as a promising application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy targeting and add further features such as enhanced magnetic resonance imaging, biosensing and hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new generation of nanosystems, the magnetogels, which combine the advantages of both nanomaterials, apart from showing interesting properties unobtainable when both systems are separated. The presence of magnetic nanoparticles allows the control and targeting of the nanosystem to a specific location by an externally applied magnetic field gradient. Moreover, the application of an alternating magnetic field (AMF) not only allows therapy through hyperthermia, but also enhances drug delivery and chemotherapeutic desired effects, which combined with the hydrogel specificity, confer a high therapeutic efficiency. Therefore, the present review summarizes the magnetogels properties and critically discusses their current and recent biomedical applications, apart from an outlook on future goals and perspectives.


Sign in / Sign up

Export Citation Format

Share Document