The influence of co-solvents on the stability and bioavailability of rapamycin formulated in self-microemulsifying drug delivery systems

2011 ◽  
Vol 37 (8) ◽  
pp. 986-994 ◽  
Author(s):  
Minghui Sun ◽  
Luqin Si ◽  
Xuezhen Zhai ◽  
Zhaoze Fan ◽  
Yiming Ma ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1482
Author(s):  
Olga Cañadas ◽  
Andrea García-García ◽  
M. Auxiliadora Prieto ◽  
Jesús Pérez-Gil

Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial species as energy storage materials, which are used in biomedical applications, including drug delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the potential application of this nanomaterial as a basis of inhaled drug delivery systems. To that end, we assessed the possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant using dynamic light scattering, Langmuir balances, and epifluorescence microscopy. Our results demonstrate that NPs deposited onto preformed monolayers of DPPC or DPPC/POPG bind these surfactant lipids. This interaction facilitated the translocation of the nanomaterial towards the aqueous subphase, with the subsequent loss of lipid from the interface. NPs that remained at the interface associated with liquid expanded (LE)/tilted condensed (TC) phase boundaries, decreasing the size of condensed domains and promoting the intermixing of TC and LE phases at submicroscopic scale. This provided the stability necessary for attaining high surface pressures upon compression, countering the destabilization induced by lipid loss. These effects were observed only for high NP loads, suggesting a limit for the use of these NPs in pulmonary drug delivery.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Xiunan Wang ◽  
Yi Liu ◽  
Jingcheng Xu ◽  
Shengjuan Li ◽  
Fada Zhang ◽  
...  

Graphene, a two-dimensional nanomaterial with unique biomedical properties, has attracted great attention due to its potential applications in graphene-based drug delivery systems (DDS). In this work graphene sheets with various sizes and graphene oxide functionalized with polyethylene glycol (GO-PEG) are utilized as nanocarriers to load anticancer drug molecules including CE6, DOX, MTX, and SN38. We carried out molecular dynamics calculations to explore the energetic stabilities and diffusion behaviors of the complex systems with focuses on the effects of the sizes and functionalization of graphene sheets as well as the number and types of drug molecules. Our study shows that the binding of graphene-drug complex is favorable when the drug molecules and finite graphene sheets become comparable in sizes. The boundaries of finite sized graphene sheets restrict the movement of drug molecules. The double-side loading often slows down the diffusion of drug molecules compared with the single-side loading. The drug molecules bind more strongly with GO-PEG than with pristine graphene sheets, demonstrating the advantages of functionalization in improving the stability and biocompatibility of graphene-based DDS.


2019 ◽  
Vol 25 (14) ◽  
pp. 1604-1615 ◽  
Author(s):  
Brenna L.C. Gondim ◽  
João A. Oshiro-Júnior ◽  
Felipe H.A. Fernanandes ◽  
Fernanda P. Nóbrega ◽  
Lúcio R.C. Castellano ◽  
...  

Background: Plant extracts loaded in nanostructured drug delivery systems (NDDSs) have been reported as an alternative to current therapies for treating parasitic and antimicrobial diseases. Among their advantages, plant extracts in NDSSs increase the stability of the drugs against environmental factors by promoting protection against oxygen, humidity, and light, among other factors; improve the solubility of hydrophobic compounds; enhance the low absorption of the active components of the extracts (i.e., biopharmaceutical classification II), which results in greater bioavailability; and control the release rate of the substances, which is fundamental to improving the therapeutic effectiveness. In this review, we present the most recent data on NDDSs using plant extracts and report results obtained from studies related to in vitro and in vivo biological activities.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 329 ◽  
Author(s):  
Daria Lovskaya ◽  
Natalia Menshutina

The present work focuses on the preparation of alginate-based aerogels in the form of particles for their further study as potential drug delivery systems (solid dosage forms). The dripping method was used to prepare certain gel particles, and supercritical drying was used to obtain final alginate-based aerogel particles. Three model active substances (ketoprofen, nimesulide, loratadine) were impregnated into the obtained aerogels using the supercritical adsorption process. Using the method of X-ray analysis, it was shown that the in the obtained drug-loaded aerogels the corresponding active substances are in an amorphous state, and the stability of this state after six months of storage is confirmed. In vitro dissolution tests for obtained drug-loaded aerogels was performed. For each sample, an appropriate dissolution medium (with certain pH) was determined. In vitro investigations showed the increasing of the release rate for all model active substances. Time was required to release and dissolve 50% of the active drug from drug-loaded aerogels (T1/2), reduced in comparison with pure active drugs in crystalline form. Obtained results provide insight into the application of alginate-based aerogel particles as a drug delivery system to improve pharmacokinetic properties of certain active drugs.


2020 ◽  
Vol 583 ◽  
pp. 119354
Author(s):  
Bo Zhang ◽  
Xin Zhou ◽  
Yunqiu Miao ◽  
Xiaoli Wang ◽  
Yuting Yang ◽  
...  

Author(s):  
Miryam Chiara Malacarne ◽  
Stefano Banfi ◽  
Matteo Rugiero ◽  
Enrico Caruso

AbstractPhotodynamic therapy involves the concomitant action of three components, light with an appropriate wavelength, molecular oxygen, and a molecule, able to absorb an electromagnetic radiation, called photosensitizer (PS). A fundamental aspect is the bioavailability of the PS that is directly related to some physicochemical properties of the PS itself as it should feature a certain degree of lipophilicity to easily cross the cell membrane, however, at the same time, should be sufficiently water-soluble to navigate in the bloodstream. Consequently, the use of a system for drug delivery becomes essential when photosensitizers with a high degree of lipophilicity are considered. In this work, we present three different drug delivery systems, microemulsions, emulsions and liposomes all capable of carrying a PS belonging to the porphyrin family: the tetraphenyl porphyrin (TPP) and the 4-hydroxyphenyl porphyrin (THPP), which show a relevant different degree of lipophilicity. A series of microemulsions (ME) and emulsions (E) were prepared, among which two formulations, one for THPP and one for TPP, have been chosen. The stability of these two carriers was monitored over time and under various temperature conditions. With the same criteria, two liposomal formulations have been also identified and analyzed. The four formulations mentioned above (one ME, one E and two liposomes) have been tested on SKOV3 tumor cell line comparing the photodynamic activity of the porphyrin formulations versus the aqueous/organic (DMSO) solution of the same two PSs. The results show that all the formulations have proved to be excellent carriers and that the liposomal formulation enhance the photodynamic efficacy of both porphyrins.


2016 ◽  
Vol 4 (15) ◽  
pp. 2570-2577 ◽  
Author(s):  
B. Zhang ◽  
P. J. Molino ◽  
A. R. Harris ◽  
Z. Yue ◽  
S. E. Moulton ◽  
...  

The development of inherently conducting polymers as controllable/programmable drug delivery systems has attracted significant interest in medical bionics, and the interfacial properties of the polymers, in particular, protein adsorption characteristics, is integral to the stability of the overall performance.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-3
Author(s):  
Priyanka Ray ◽  

Research in the field of polymers and polymeric materials has garnered immense attention in the past few decades due to the versatile functional and structural capabilities of polymers which often can be manipulated for applications in the field of therapy and diagnosis for a host of diseases and disorders. Polymer therapeutics comprises polymer-drug and polymer-protein conjugates as well as supramolecular systems used as drug delivery systems. Although the pharmacological industry invests immensely in the design and discovery of novel drug molecules, small molecular drugs are often inefficient in targeting many diseases like deep seated low vasculature tumours, metastasized cancers and various autoimmune diseases. Coupled with a rapid clearance rate, low solubility, drug resistance and high off target toxicity these small molecular drugs often present modest benefits for a host of common diseases. In order to improve the therapeutic index of pre-existing drugs and shortening the translation from preclinical validation to clinical approval, a vast area of drug delivery research focuses on the improvement of drug carriers by various alterations. The major challenges currently faced by drug delivery systems include a low payload, transition through the desmoplastic barrier for solid tumours and high hepatic and renal clearance. In order to address these issues numerous polymer–protein and polymer-drug conjugates have been engineered and have reported to enhance the stability and pharmacokinetic properties of the active drugs. Highly toxic anticancer drugs like doxorubicin, cis-platin and gemcitabine have successfully been coupled with high molecular weight polymers to formulate targeted drug delivery agents, some of which have undergone successful clinical trials. Apart from PEGylated polymers, dendritic polymers and polyplexes with DNA or RNA moieties have also been considered as candidates for improving the therapeutic index of various drugs. Ongoing efforts in the development of polymer-based therapeutics are promising and open new horizons for personalized medicine for effective cure of various life-threatening diseases.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document