The Role of Carboxy-Terminal Glycosaminoglycan-binding Domain of Vitronectin in Cytoskeletal Organization and Migration of Endothelial Cells

1996 ◽  
Vol 4 (4-5) ◽  
pp. 317-325 ◽  
Author(s):  
Perumal Thiagarajan ◽  
Anhquyen Le ◽  
Mark B. Snuggs ◽  
Barry Vanwinkle
2000 ◽  
Vol 89 (6) ◽  
pp. 2391-2400 ◽  
Author(s):  
Hiroyuki Kito ◽  
Emery L. Chen ◽  
Xiujie Wang ◽  
Masataka Ikeda ◽  
Nobuyoshi Azuma ◽  
...  

The aim of this study was to examine the role of mitogen-activated protein kinases (MAPKs) activation in bovine pulmonary arterial endothelial cells (EC) exposed to cyclic strain. EC were subjected to 10% average strain at 60 cycles/min. Cyclic strain induced activation of extracellular signal-regulated kinase (ERK; 1.5-fold), c-Jun NH2-terminal protein kinase (JNK; 1.9-fold), and p38 (1.5-fold) with a peak at 30 min. To investigate the functional role of the activated MAPKs, we analyzed cells after treatment with PD-98059, a specific ERK kinase inhibitor, or SB-203580, a catalytic inhibitor for p38, and after transient transfection with JNK(K-R), and MEKK(K-M) the respective catalytically inactive mutants of JNK1 and MAPK kinase kinase-1. Cyclic strain increased activator protein-1 (AP-1) binding activity, which was blocked by PD-98059 and SB-203580. Activity of AP-1-dependent luciferase reporter driven by 12- O-tetradecanoyl-phorbol-13-acetate-responsive element (TRE) was induced by cyclic strain, and this was attenuated by PD-98059, MEKK(K-M), JNK(K-R), and SB-203580. PD-98059 and SB-203850 did not inhibit cell alignment and migration induced by cyclic strain. MEKK(K-M) and JNK(K-R) transfection did not block cyclic strain-induced cell alignment. In conclusion, cyclic strain activates ERK, JNK, and p38, and their activation plays a role in transcriptional activation of AP-1/TRE but not in cell alignment and migration changes in bovine pulmonary arterial EC.


2009 ◽  
Vol 11 (4) ◽  
pp. 747-764 ◽  
Author(s):  
Srikanth Pendyala ◽  
Irina A Gorshkova ◽  
Peter V. Usatyuk ◽  
Donghong He ◽  
Arjun Pennathur ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 840-840
Author(s):  
Vesselina G. Cooke ◽  
Meghna U. Naik ◽  
William Skarnes ◽  
Ulhas P. Naik

Abstract Neovascularization is a multistep process that occurs in the body in both physiological and pathological conditions. We have recently shown that Junctional Adhesion Molecule-1 (JAM-1), a member of the Ig superfamily of molecules, is involved in endothelial cell adhesion and migration, leading to angiogenesis. In quiescent endothelial cells, JAM-1 is located at the cell-cell junctions where it forms a complex with integrin αvβ3. Upon treatment of the cells with growth factors, such as bFGF, JAM-1 dissociates from its complex with αvβ3 and redistributes to the cell surface. Blockage of the extracellular domain of JAM-1 inhibits bFGF-induced endothelial cell morphology, proliferation and angiogenesis. Additionally, functional knock-down of JAM-1 using the RNAi technique in endothelial cells showed decreased adhesion and migration of these cells, indicating a possible role for JAM-1 in angiogenesis. In this report, we show that JAM-1 has an important role in bFGF-induced angiogenesis in vivo. Here we present for the first time the generation JAM-1 knock-out mice, using the gene trap strategy. We have successfully confirmed the JAM-1 −/− genotype via Southern, Northern, and Western blot analyses. JAM-1 −/− mice are viable and do not seem to have any external abnormalities, except that they appear to be smaller in size. Retinal fluorescein angiogram revealed no evidence for morphological defects in the vasculature of JAM-1 −/− mice. To evaluate the role of JAM-1 in angiogenesis, we performed an aortic ring assay with both wild type and JAM-1−/− mice. Mouse thoracic aortas were harvested, cross-sectioned into rings of 1-mm thickness, and cultured in a three-dimensional Matrigel supplied with 50 ng/ml bFGF. Vascular sproutings were counted every other day for a period of 7 days at which time they were stained with crystal violet and photographed. Aortic rings from WT mice treated with bFGF showed a 2.8-fold increase in microvessel growth, compared to WT controls with no supplementation of bFGF. In contrast, microvessel sproutings in bFGF treated aortic rings from JAM-1 −/− mice were no more than the vessels in the WT control mice. These results suggest that JAM-1 may be important for bFGF induced angiogenesis. To further confirm the role of JAM-1 in angiogenesis, WT and JAM-1 −/− mice were injected in their flank region with Matrigel containing 80 ng/ml bFGF and 60 U/ml heparin. Two weeks after injection, Matrigel plugs were excised, embedded in paraffin, and the presence of blood vessels was visualized by H&E staining. Matrigel plugs from control WT mice that were not treated with bFGF showed no vascularization, while bFGF supplied Matrigel plugs from WT mice showed a robust vessel growth. Interestingly, bFGF-treated Matrigel plugs form JAM-1−/− mice failed to produce any blood vessels. These ex vivo and in vivo studies using JAM-1−/− mice suggest that JAM-1 has a unique and essential role in bFGF-induced angiogenesis.


Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 488-497 ◽  
Author(s):  
Guillaume Carmona ◽  
Stephan Göttig ◽  
Alessia Orlandi ◽  
Jürgen Scheele ◽  
Tobias Bäuerle ◽  
...  

Abstract Ras-associated protein 1 (Rap1), a small GTPase, attracted attention because of its involvement in several aspects of cell adhesion, including integrin- and cadherin-mediated adhesion. Yet, the role of Rap1 genes and of Rap1 effectors for angiogenesis has not been investigated. Human umbilical vein endothelial cells (HUVECs) express Rap1a and Rap1b mRNA. To determine the contribution of Rap1 activity for angiogenesis, we overexpressed Rap1GAP1, a GTPase-activating protein that inhibits Rap1 activity. Overexpression of Rap1GAP1 significantly blocked angiogenic sprouting and tube-forming activity of HUVECs as well as migration and integrin-dependent adhesion. Silencing of Rap1a, Rap1b, or both significantly blocked HUVECs sprouting under basal and basic fibroblast growth factor-stimulated conditions and reduced HUVEC migration and integrin-dependent adhesion. We found that Rap1a and Rap1b are essential for the conformational activation of β1-integrins in endothelial cells. Furthermore, silencing of Rap1a and Rap1b prevented phosphorylation of tyrosine 397 in focal adhesion kinase (FAK) and vascular endothelial growth factor-induced Akt1-activation. Rap1a−/−-deficient and Rap1a+/− heterozygote mice displayed reduced neovascularization after hind limb ischemia compared with wild-type mice. Silencing of RAPL significantly blocked the Rap1-induced sprouting of HUVECs, suggesting that the angiogenic activity of Rap1 is partly mediated by RAPL. Our data demonstrate a critical role of Rap1 in the regulation of β1-integrin affinity, adhesion, and migration in endothelial cells and in postnatal neovascularization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kang Wang ◽  
Haixuan Chen ◽  
Zhongyang Zhou ◽  
Haifeng Zhang ◽  
Huanjiao Jenny Zhou ◽  
...  

Abstract Background Numerous signaling pathways have been demonstrated experimentally to affect the pathogenesis of cerebral cavernous malformations (CCM), a disease that can be caused by CCM3 deficiency. However, the understanding of the CCM progression is still limited. The objective of the present work was to elucidate the role of CCM3 by RNA-seq screening of CCM3 knockout mice. Results We found that ATPIF1 was decreased in siCCM3-treated Human Umbilical Vein Endothelial Cells (HUVECs), and the overexpression of ATPIF1 attenuated the changes in cell proliferation, adhesion and migration caused by siCCM3. The probable mechanism involved the conserved ATP concentration in mitochondria and the elongated morphology of the organelles. By using the CRISPR-cas9 system, we generated CCM3-KO Endothelial Progenitor Cells (EPCs) and found that the knockout of CCM3 destroyed the morphology of mitochondria, impaired the mitochondrial membrane potential and increased mitophagy. Overexpression of ATPIF1 contributed to the maintenance of normal structure of mitochondria, inhibiting activation of mitophagy and other signaling proteins (e.g., KLF4 and Tie2). The expression of KLF4 returned to normal in CCM3-KO EPCs after 2 days of re-overexpression of CCM3, but not other signaling proteins. Conclusion ATPIF1 maintains the normal structure of mitochondria, inhibiting the activation of mitophagy and other signaling pathway in endothelial cells. Loss of CCM3 leads to the destruction of mitochondria and activation of signaling pathways, which can be regulated by KLF4.


2013 ◽  
Vol 7 (5) ◽  
pp. 408-411 ◽  
Author(s):  
Federico Galvagni ◽  
Maurizio Orlandini ◽  
Salvatore Oliviero

2013 ◽  
Vol 202 (6) ◽  
pp. 937-950 ◽  
Author(s):  
Qingwei Zhu ◽  
Yong Hwan Kim ◽  
Douglas Wang ◽  
S. Paul Oh ◽  
Kunxin Luo

In endothelial cells, two type I receptors of the transforming growth factor β (TGF-β) family, ALK1 and ALK5, coordinate to regulate embryonic angiogenesis in response to BMP9/10 and TGF-β. Whereas TGF-β binds to and activates ALK5, leading to Smad2/3 phosphorylation and inhibition of endothelial cell proliferation and migration, BMP9/10 and TGF-β also bind to ALK1, resulting in the activation of Smad1/5. SnoN is a negative regulator of ALK5 signaling through the binding and repression of Smad2/3. Here we uncover a positive role of SnoN in enhancing Smad1/5 activation in endothelial cells to promote angiogenesis. Upon ligand binding, SnoN directly bound to ALK1 on the plasma membrane and facilitated the interaction between ALK1 and Smad1/5, enhancing Smad1/5 phosphorylation. Disruption of this SnoN–Smad interaction impaired Smad1/5 activation and up-regulated Smad2/3 activity. This resulted in defective angiogenesis and arteriovenous malformations, leading to embryonic lethality at E12.5. Thus, SnoN is essential for TGF-β/BMP9-dependent biological processes by its ability to both positively and negatively modulate the activities of Smad-dependent pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soha A. Soliman

AbstractThe current study investigated role of telocytes (TCs) in angiogenesis during embryonic development of quail using immunohistochemistry (IHC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The angiogenic apparatus consisted of TCs, endothelial cells, and macrophages. TCs were identified morphologically by their telopodes and podoms using TEM and SEM and immunohistochemically using CD34, and vascular endothelial growth factor (VEGF). TCs also expressed CD68. TCs formed a three-dimensional network and established direct contact with blood vessels, sprouting endothelial cells, and active macrophages, while exerting their effect through paracrine signaling. VEGF was also expressed by endothelial cells and macrophages. Matrix metalloproteinase–9 (MMP-9) was expressed by TCs, endothelial cells, and macrophages. In conclusion, the expression of VEGF by TCs, endothelial cells, and macrophages is required for the proliferation and migration of endothelial cells and vascular growth. The expression of MMP-9 by TCs, endothelial cells, and macrophages is essential for the degradation of extracellular matrix (ECM) components during neoangiogenesis. Macrophages may facilitate phagocytosis and elimination of the degraded ECM components.


Sign in / Sign up

Export Citation Format

Share Document