scholarly journals A Novel Adaptive Pixels Segmentation Algorithm for Pavement Crack Detection

2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>

2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>


2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F1 score = 83.9%).


Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types. This paper proposes a new method that uses an adapted version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. The method uses the Gaussian cumulative density function (CDF) as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of various pavement noise conditions. The method proved to be time and cost-efficient as it took less than 3.15 s per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to generate the detection results. This makes the proposed method a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of medium to severe-level cracks (precision = 79.21%, recall = 89.18%, and F1 score = 83.90%).


2003 ◽  
Vol 2003 (1) ◽  
pp. 269-272
Author(s):  
David Salt ◽  
Roger Stockham ◽  
Stuart Byers

ABSTRACT Recent changes in legislation within the United Kingdom created pressure for change in the response strategies applicable in the UK offshore environment. To meet the new requirements, innovative technology was required which was capable of speedily delivering a payload of approximately one ton of dispersant. To provide a cost efficient solution, a system was developed capable of being mounted on a non-dedicated aircraft, which can be rapidly adapted to meet the response requirements. This paper describes the design criteria for the system and goes on to detail the development, construction and flight testing programme for the dispersant pods. It then goes on to briefly describe the operational response system which has been established to provide a response for the offshore operators in the United Kingdom Continental Shelf (UKCS). The development represents a significant step forward in providing a low cost, effective solution to changing response requirements using innovative engineering solutions, allowing for potential application in other parts of the world.


2020 ◽  
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Paolo Fabris ◽  
Marco Severin

&lt;p&gt;The Global Navigation Satellite Systems (GNSS) provide a globally extended dataset of primordial importance for a wide range of applications, such as crustal deformation, topographic measurements, or near surface processes studies. However, the high costs of GNSS receivers and the supporting software can represent a strong limitation for the applicability to landslide monitoring. Low-cost tools and techniques are strongly required to face the plausible risk of losing the equipment during a landslide event.&lt;/p&gt;&lt;p&gt;Centro di Ricerche Sismologiche (CRS) of Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS in collaboration with SoluTOP, in the last years, has developed a cost-effective GNSS device, called LZER0, both for post-processing and real-time applications. The aim is to satisfy the needs of both scientific and professional communities which require low-cost equipment to increase and improve the measurements on structures at risk, such as landslides or buildings, without losing precision.&lt;/p&gt;&lt;p&gt;The landslide monitoring system implements single-frequency GNSS devices and open source software packages for GNSS positioning, dialoguing through Linux shell scripts. Furthermore a front-end web page has been developed to show real-time tracks. The system allows measuring real-time surface displacements with a centimetre precision and with a cost ten times minor than a standard RTK GPS operational system.&lt;/p&gt;&lt;p&gt;This monitoring system has been tested and now applied to two landslides in NE- Italy: one near Tolmezzo municipality and one near Brugnera village. Part of the device development has been included inside the project CLARA 'CLoud plAtform and smart underground imaging for natural Risk Assessment' funded by the Italian Ministry of Education, University and Research (MIUR).&lt;/p&gt;


Ingeniería ◽  
2018 ◽  
Vol 23 (1) ◽  
pp. 70 ◽  
Author(s):  
Edwin Blasnilo Rua Ramirez ◽  
Fernando Jimenez Diaz ◽  
German Andres Gutierrez Arias ◽  
Nelson Iván Villamizar

Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs.Method: Firstly, a large scale 3D printer with improved technical specifications compared to traditional market options and similar price, was fabricated. By means of free software and hardware tools and easy-to-obtain alternative manufacturing materials, it was possible to decrease its manufacturing and operating costs. Then a set of study cases utilising the 3D printer in three different subject classes were designed and tested with two cohorts of students of Mechanical Engineering programme.Results: It was feasible to fabricate a cost-effective and practical 3D printer for constructing prototypes and pieces that benefit teaching and learning concepts in engineering and design areas. The experiments carried out in three subjects of engineering courses with second-year students, showed a similar trend of improving the average course grades, as it was observed in two cohorts in different terms.Conclusions: This type of low cost 3D printer obtained academic advantages as a didactic tool for the learning process in engineering and design subjects. Future work will consider applying this tool to other courses and subjects to further evaluate its convenience and effectivity.


Author(s):  
Daniel B. Hess ◽  
Brian D. Taylor ◽  
Allison C. Yoh

Bus rapid transit (BRT) is growing rapidly in popularity because it is viewed widely as an efficient and effective means to improve both transit service and patronage. This paper argues that two distinct views of BRT are emerging: ( a) BRT as a new form of high-speed, rubber-tired, rail-like rapid transit and ( b) BRT as a cost-effective way to upgrade both the quality and image of traditional fixed-route bus service. These two views carry different price tags because the cost of planning, constructing, and operating BRT depends on the complexity of new service features and on rises for BRT that offer service characteristics approaching those of light rail. This study fills a gap in the literature on the costs of BRT by examining in detail component costs–-actual costs for recently implemented services and projected costs for planned new services–-for a sample of BRT systems in North American cities. The study examined BRT costs of 14 planned and recently opened BRT systems to determine how the wide range of BRT service and technology configurations affect costs. The study found that although some of the most successful and popular new BRT systems are high-quality services operating in mixed traffic and implemented at relatively low cost, most BRT projects on the drawing boards are more elaborate, more expensive systems than many currently in service. Most new BRT projects emphasize elaborate LRT-type improvements to lines and stations in one or a few corridors rather than less splashy improvements (such as next-bus monitors, signal preemption, queue-jump lanes, and so forth) affecting more lines and modes in local transit networks. Among the 14 systems examined here, most could be characterized as light rail lite.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1719 ◽  
Author(s):  
Sanja P. Kojic ◽  
Goran M. Stojanovic ◽  
Vasa Radonic

Microfluidics, one of the most attractive and fastest developed areas of modern science and technology, has found a number of applications in medicine, biology and chemistry. To address advanced designing challenges of the microfluidic devices, the research is mainly focused on development of efficient, low-cost and rapid fabrication technology with the wide range of applications. For the first time, this paper presents fabrication of microfluidic chips using hybrid fabrication technology—a grouping of the PVC (polyvinyl chloride) foils and the LTCC (Low Temperature Co-fired Ceramics) Ceram Tape using a combination of a cost-effective xurography technique and a laser micromachining process. Optical and dielectric properties were determined for the fabricated microfluidic chips. A mechanical characterization of the Ceram Tape, as a middle layer in its non-baked condition, has been performed and Young’s modulus and hardness were determined. The obtained results confirm a good potential of the proposed technology for rapid fabrication of low-cost microfluidic chips with high reliability and reproducibility. The conducted microfluidic tests demonstrated that presented microfluidic chips can resist 3000 times higher flow rates than the chips manufactured using standard xurography technique.


2021 ◽  
Vol 310 ◽  
pp. 03001
Author(s):  
Anindya Bose ◽  
Somnath Mahato ◽  
Sukabya Dan ◽  
Atanu Santra

Global Navigation Satellite System (GNSS) uses Precise Point Positioning (PPP) technique to find out accurate geolocation information of any point. Generally, costly, geodetic GNSS receivers are used for PPP. This manuscript presents the results of studies on the usability of commercial, compact, cost-effective GNSS modules with commercial antennas for PPP in comparison to commonly used geodetic, costly receivers from India, which is a excellent location for GNSS use. Compact GNSS modules from two manufacturers are used in the study, and the encouraging results show the clear advantage of cost, size, and power requirements of such modules. The modules provide sub-cm horizontal solution accuracy which is very similar to those obtained using geodetic receivers, and around 20 cm accuracy in the vertical coordinate, which is slightly inferior to the results provided by the geodetic reveivers. Results of this novel study would be useful for implementing cost-efficient GNSS PPP in real life, in highly demanding geodetic applications including CORS establishment and PPP.


Author(s):  
Nikhil Dave ◽  
Katie Sue Pascavis ◽  
John Patterson ◽  
David Wallace ◽  
Abhik Chowdhury ◽  
...  

AbstractDue to the virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for the respiratory disease termed COVID-19, there has been a significant increase in demand for surgical masks and N95 respirators in medical clinics as well as within communities operating during the COVID-19 epidemic. Thus, community members, business owners, and even medical personnel have resorted to alternative methods for sterilizing face coverings and N95 respirators for reuse. While significant work has shown that vaporized hydrogen peroxide (VHP) can be used to sterilize N95 respirators, the cost and installation time for these sterilization systems limit their accessibility. To this end, we have designed and constructed a novel, cost-effective, and scalable VHP system that can be used to sterilize N95 respirators and other face coverings for clinical and community applications. N95 respirators inoculated with P22 bacteriophage showed a greater than 6-log10 reduction in viral load when sterilized in the VHP system for one 60-minute cycle. Further, N95 respirators treated with 20 cycles in this VHP system showed comparable filtration efficiency to untreated N95 respirators in a 50 to 200 nanometer particulate challenge filtration test. While a 23% average increase in water droplet roll-off time was observed for N95 respirators treated with 5 cycles in the sterilization, no breakdown in fluid resistance was detected. These data suggest that our VHP system is effective in sterilizing N95 respirators and other polypropylene masks for reuse. Relating to the present epidemic, deployment of this system reduces the risk of COVID-19 community transmission while conserving monetary resources otherwise spent on the continuous purchase of disposable N95 respirators and other face coverings. In summary, this novel, scientifically validated sterilization system can be easily built at a low cost and implemented in a wide range of settings.


Sign in / Sign up

Export Citation Format

Share Document