Features of monitoring of linear transport structures

Author(s):  
A.A. Neretin ◽  
◽  
I.I. Pozniak ◽  
◽  

The article examines the operation of the total station in non-refiective mode, the change in the geometry of the laser spot at different angles of deviation of the telescope from the shooting perpendicular. The studies helped to determine the maximum distance from the total station to the observed points, the permissible angle of the beam direction, and to calculate the optimal distance between neighboring stations when examining linear objects.

2018 ◽  
Author(s):  
Ronaldo Soritua Sitanggang ◽  
Denny Darlis ◽  
Karina Wahyu Noviyanti

This article is preprint for ASAIS 2018 - Visible Light Communication is the name given to wireless communication systems that convey information by modulating visible light by the human eye. Interest in the field of VLC has grown rapidly along with the development of LEDs as a source of lighting. The motivation is clear: If the room is lit by an LED, why not use it further for the communication provider, along with the lighting facilities at the same time? At the sending side, VLC technology uses LED lighting lamps which are currently very popular to replace incandescent lamps and TL (Fluorescent Lamp) lamps. Visible light communication has many advantages, including security, speed, and convenience to be applied to users to send various types of information including digital data such as text and images. Several studies have been conducted previously regarding the application of information delivery systems using VLC such as sending voice, digital data, images, and video. However, it has not been clearly stated the influence of various lighting lamps used on the system mentioned above such as electrical and optical power used, the angle of transmission and optimal distance with the influence of environmental conditions that cause information transmission losses. Data that can be sent well use yard lighting with a maximum distance of 130 cm with 15 lx light intensity, street lighting with a maximum distance of 400 cm with 6 lx light intensity, and vehicle lights with a maximum distance of 270 cm with 12 lx light intensity.


Author(s):  
K. Ishizuka

The technique of convergent-beam electron diffraction (CBED) has been established. However there is a distinct discrepancy concerning the CBED pattern symmetries associated with translation symmetries parallel to the incident beam direction: Buxton et al. assumed no detectable effects of translation components, while Goodman predicted no associated symmetries. In this report a procedure used by Gjønnes & Moodie1 to obtain dynamical extinction rules will be extended in order to derive the CBED pattern symmetries as well as the dynamical extinction rules.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
K. Ishizuka ◽  
K. Shirota

In a conventional alignment for high-resolution electron microscopy, the specimen point imaged at the viewing-screen center is made dispersion-free against a voltage fluctuation by adjusting the incident beam direction using the beam deflector. For high-resolution works the voltage-center alignment is important, since this alignment reduces the chromatic aberration. On the other hand, the coma-free alignment is also indispensable for high-resolution electron microscopy. This is because even a small misalignment of the incident beam direction induces wave aberrations and affects the appearance of high resolution electron micrographs. Some alignment procedures which cancel out the coma by changing the incident beam direction have been proposed. Most recently, the effect of a three-fold astigmatism on the coma-free alignment has been revealed, and new algorithms of coma-free alignment have been proposed.However, the voltage-center and the coma-free alignments as well as the current-center alignment in general do not coincide to each other because of beam deflection due to a leakage field within the objective lens, even if the main magnetic-field of the objective lens is rotationally symmetric. Since all the proposed procedures for the coma-free alignment also use the same beam deflector above the objective lens that is used for the voltage-center alignment, the coma-free alignment is only attained at the sacrifice of the voltage-center alignment.


Author(s):  
Kazuo Ishizuka

It is well known that taking into account spacial and temporal coherency of illumination as well as the wave aberration is important to interpret an image of a high-resolution electron microscope (HREM). This occues, because coherency of incident electrons restricts transmission of image information. Due to its large spherical and chromatic aberrations, the electron microscope requires higher coherency than the optical microscope. On an application of HREM for a strong scattering object, we have to estimate the contribution of the interference between the diffracted waves on an image formation. The contribution of each pair of diffracted waves may be properly represented by the transmission cross coefficients (TCC) between these waves. In this report, we will show an improved form of the TCC including second order derivatives, and compare it with the first order TCC.In the electron microscope the specimen is illuminated by quasi monochromatic electrons having a small range of illumination directions. Thus, the image intensity for each energy and each incident direction should be summed to give an intensity to be observed. However, this is a time consuming process, if the ranges of incident energy and/or illumination direction are large. To avoid this difficulty, we can use the TCC by assuming that a transmission function of the specimen does not depend on the incident beam direction. This is not always true, because dynamical scattering is important owing to strong interactions of electrons with the specimen. However, in the case of HREM, both the specimen thickness and the illumination angle should be small. Therefore we may neglect the dependency of the transmission function on the incident beam direction.


2004 ◽  
Vol 171 (4S) ◽  
pp. 51-51
Author(s):  
Roger E. De Filippo ◽  
Hans G. Pohl ◽  
James J. Yoo ◽  
Anthony Atala

2018 ◽  
Vol 43 (1-4) ◽  
pp. 13-45
Author(s):  
Prof. P. L. Sharma ◽  
◽  
Mr. Arun Kumar ◽  
Mrs. Shalini Gupta ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document