scholarly journals Rapid response to the Mw 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France

2020 ◽  
Author(s):  
Cécile Cornou ◽  
Jean-Paul Ampuero ◽  
Coralie aubert ◽  
Laurence Audin ◽  
Stéphane Baize ◽  
...  

On November 11, 2019, a Mw 4.9 earthquake hit the region close to Montelimar (lower Rhône Valley, France), on the eastern margin of the Massif Central close to the external part of the Alps. Occuring in a moderate seismicity area, this earthquake is remarkable for its very shallow focal depth (between 1 and 3 km), its magnitude,  and the moderate to large damages it produced in several villages. InSAR interferograms indicated a shallow rupture about 4 km long reaching the surface and the reactivation of the ancient NE-SW La Rouviere normal fault in reverse faulting in agreement with the present-day E-W compressional tectonics. The peculiarity of this earthquake together with a poor coverage of the epicentral region by permanent seismological and geodetic stations triggered the mobilisation of the French post-seismic unit and the broad French scientific community from various institutions, with the deployment of geophysical instruments (seismological and geodesic stations),  geological field surveys, and field evaluation of the intensity of the earthquake. Within 7 days after the mainshock, 47 seismological stations were deployed in the epicentral area to improve the Le Teil aftershocks locations relative to the French permanent seismological network (RESIF), monitor the temporal and spatial evolution of microearthquakes close to the fault plane and temporal evolution of the seismic response of 3 damaged historical buildings, and to study suspected site effects and their influence in the distribution of seismic damage. This seismological dataset, completed by data owned by different institutions, was integrated in a homogeneous archive and distributed through FDSN web services by the RESIF data center. This dataset, together with observations of surface rupture evidences, geologic, geodetic and satellite data, will help to unravel the causes and rupture mechanism of this earthquake, and contribute to account in seismic hazard assessment for earthquakes along the major regional Cévenne fault system in a context of present-day compressional tectonics.

Author(s):  
Jean-François Ritz ◽  
Stéphane Baize ◽  
Matthieu Ferry ◽  
Christophe Larroque ◽  
Laurence Audin ◽  
...  

<p>On November 11th 2019, a Mw 4.9 earthquake shook the Rhone River Valley in southern France, a rather densely populated area with many industrial facilities including several nuclear power plants. The “Le Teil” earthquake was felt as far as Montpellier and Grenoble, 120 km from the epicenter. Seismological data promptly showed that the earthquake corresponded to a reverse faulting event along a NE-SW trending fault with a focus at a very shallow depth (~1 km). In parallel, satellite-based radar observations (InSAR) showed the uplift of the SE compartment (up to 10 centimeters) along a sharp NE-SW trending ~4.5-km-long discontinuity. Field investigations conducted in the following days and weeks in the epicentral area uncovered several evidences of surface ruptures across roads and paths where the InSAR discontinuity is mapped. We also carried out airborne LiDAR surveys to map the rupture below the dense forest cover. Characteristics of surface deformations are fully consistent with InSAR and seismological data, and allow concluding to the reactivation of an Oligocene normal fault segment (i.e. La Rouvière fault) that belongs to the Cévennes fault system, a 120 km long polyphased system bounding the southern rim of the Massif Central. The absence of clear cumulative compressional deformation along the fault rupture, which on the contrary displays inherited extensional deformation (most likely Oligocene in age), suggests that the fault has not moved significantly since millions of years. These observations relaunch the question of seismic hazard assessment in stable continental regions such as continental France and most of Western Europe, where strain rates are very low.</p>


2021 ◽  
Vol 58 ◽  
pp. 200
Author(s):  
Dimitrios Galanakis ◽  
Sotiris Sboras ◽  
Garyfalia Konstantopoulou ◽  
Markos Xenakis

On March 3, 2021, a strong (Mw6.3) earthquake occurred near the towns of Tyrnavos and Elassona. One day later (March 4), a second strong (Mw6.0) earthquake occurred just a few kilometres toward the WNW. The aftershock spatial distribution and the focal mechanisms revealed NW-SE-striking normal faulting. The focal mechanisms also revealed a NE-SW oriented extensional stress field, different from the orientation we knew so far (ca. N-S). The magnitude and location of the two strongest shocks, and the spatiotemporal evolution of the sequence, strongly suggest that two adjacent fault segments were ruptured respectively. The sequence was followed by several coseismic ground deformational phenomena, such as landslides/rockfalls, liquefaction and ruptures. The landslides and rockfalls were mostly associated with the ground shaking. The ruptures were observed west of the Titarissios River, near to the Quaternary faults found by bore-hole lignite investigation. In the same direction, a fault scarp separating the alpidic basement from the alluvial deposits of the Titarissios valley implies the occurrence of a well-developed fault system. Some of the ground ruptures were accompanied by extensive liquefaction phenomena. Others cross-cut reinforced concrete irrigation channels without changing their direction. We suggest that this fault system was partially reactivated, as a secondary surface rupture, during the sequence as a steeper splay of a deeper low-to-moderate angle normal fault.


2020 ◽  
Author(s):  
Juan José Portela Fernández ◽  
Alejandra Staller Vázquez ◽  
Marta Béjar Pizarro

<p>The Central Valley, Costa Rica, is subject to moderate seismicity, related to the Central Costa Rica Deformation Belt: a region with diffuse deformation, where Caribbean, Cocos and Nazca Plates, as well as the Panama Micro-plate, interact.  The Eastern part of the valley is dominated by the Aguacaliente-Navarro fault system. The city of Cartago was destroyed by an earthquake Ms 6.4 in 1910, associated with the rupture of the Aguacaliente fault. Volcanic unrest –mainly in Turrialba Volcano, with recent activity reported- is present in the area, thus resulting in a very complex interaction zone, where seismic hazard studies are crucial.</p><p>In this context, we process GNSS observations from five different campaigns -2012, 2014, 2016, 2018 and 2020- in 13 stations in the area, in order to estimate their Caribbean-fixed velocities, hence the regional cumulative strain. Additionally, we use both InSAR and GNSS data to measure volcanic deformation, aiming to refine the computed velocities by removing volcanic deformation from the tectonic signal.</p><p>The refined velocities allow us to asses a more precise cumulative strain for the Aguacaliente-Navarro fault system, which is useful to improve seismic hazard assessment in Cartago, one of the most important cities in the region.</p>


Author(s):  
Ben Surpless ◽  
Sarah Thorne

Normal faults are commonly segmented along strike, with segments that localize strain and influence propagation of slip during earthquakes. Although the geometry of segments can be constrained by fault mapping, it is challenging to determine seismically relevant segments along a fault zone. Because slip histories, geometries, and strengths of linkages between normal fault segments fundamentally control the propagation of rupture during earthquakes, and differences in segment slip rates result in differential uplift of adjacent footwalls, we used along-strike changes in footwall morphology to detect fault segments and the relative strength of the mechanical links between them. We applied a new geomorphic analysis protocol to the Wassuk Range fault, Nevada, within the actively deforming Walker Lane. The protocol examines characteristics of footwall morphology, including range-crest continuity, bedrock-channel long profiles, catchment area variability, and footwall relief, to detect changes in strike-parallel footwall characteristics. Results revealed six domains with significant differences in morphology that we used to identify seismically relevant fault segments and segment boundaries. We integrated our results with previous studies to determine relative strength of links between the six segments, informing seismic hazard assessment. When combined with recent geodetic studies, our results have implications for the future evolution of the Walker Lane, suggesting changes in the accommodation of strain across the region. Our analysis demonstrates the power of this method to efficiently detect along-strike changes in footwall morphology related to fault behavior, permitting future researchers to perform reconnaissance assessment of normal fault segmentation worldwide.


2021 ◽  
Author(s):  
Tvrtko Korbar ◽  
Matija Vukovski ◽  
Snježana Markušić

<p>Devastating M6.2 earthquake (1) hit Petrinja epicentral area (2) on 2020-12-29. M5.0 foreshock on 2020-12-28 (1) caused moderate damage on buildings and forced many inhabitants to move out form their homes. Thus, the foreshock was a kind of lucky event that saved many human lives.</p><p>Considering the shallow focal depth (1) and QMTS that show clear strike-slip focal mechanisms (3, 4), surface failures were expected after the mainshock. Immediate reports in media allowed quick online research of surface failures indicating that linear infrastructure damages appear along ~30 km long portion of sinistral NE-SW striking Sisak-Petrinja-Glina-Topusko Fault. Quick field inspection revealed that fresh fault planes in the bedrock appear mostly along longitudinal NW-SE striking (Dinaric strike) Pokupsko-Kostajnica-Banja Luka Fault, and show clear dextral co-seismic stike-slip displacements. The map view time-lapse animation of the seismic sequence (5) revealed that ~20 km long portion of the Pokupsko Fault was (re)activated. The two subvertical  mutually perpendicular faults intersect near the epicenters. The historically important Pokupsko earthquake occured in the vicinity (6), and was used by a famous Croatian geophysicist Andrija Mohorovičić to discover the MOHO discontinuity.</p><p>The fault system is textbook example of major failure in the upper crust along the pre-existing fault net (7) at the critical moment of centennial release of generally north-south oriented compressional strain that is accumulating in the crust because of continuous northward movement of the Adriatic microplate (Adria). Up to 10 mm/yr Adria GPS velocities measured in the Adriatic foreland are mostly accommodating along major External Dinarides active faults, since the Internal Dinarides GPS velocities are only 1-2 mm/yr, while the velocities in the Pannonian basin are near zero (8). The dextral Pokupsko-Banja Luka Fault could be one of the main inherited active faults between the crustal segments of the Adria, while sinistral Petrinja fault could represent reactivated Mesozoic transform fault bordering the crustal fragments (9) of once greater Adria (10).</p><ul><li>(1) https://www.pmf.unizg.hr/geof/seizmoloska_sluzba, Accessed: 2020-12-29 11:50 UTC</li> <li>(2) Stanko D, Markušić S, Korbar T, Ivančić J. (2020): Estimation of the High-Frequency Attenuation Parameter Kappa for the Zagreb (Croatia) Seismic Stations. Applied Sciences. 10(24):8974.</li> <li>(3) https://www.emsc-csem.org/#2, Accessed: 2020-12-28 05:28:07 UTC</li> <li>(4) https://www.emsc-csem.org/#2, Accessed: 2020-12-29 11:35 UTC</li> <li>(5) https://www.pmf.unizg.hr/geof/seizmoloska_sluzba, Accessed: 2021-01-03 07:50 UTC</li> <li>(6) Herak, D and Herak, M. (2010): The Kupa Valley (Croatia) earthquake of 8 October 1909 – 100 years later. Seismological research letters, 81, 30-36.</li> <li>(7) Pikija, M. (1987): Osnovna geološka karta SFRJ, 1: 100 000: List Sisak, L 33-93. hgi-cgs.hr</li> <li>(8) Battaglia, M., Murray, M.H., Serpelloni, E. and Bürgmann, R. (2004). The Adriatic region: An independent microplate within the Africa-Eurasia collision zone. Geophysical Research Letters, 31, 1–4.</li> <li>(9) Korbar (2009): Orogenic evolution of the External Dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth Science Reviews, 96/4, 296-312.</li> <li>(10) van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Maţenco, L.C., Maffione, M., Vissers, R.L.M., Gürer, D., Spakman, W. (2020): Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79-229.</li> </ul>


Author(s):  
Han Chen ◽  
Xiaohui He ◽  
Hongfeng Yang ◽  
Jiangyang Zhang

Abstract On 4 January 2020, an ML 3.5 earthquake occurred in the Pearl River Estuary (PRE) and was felt at a distance of more than 200 km. According to the China Earthquake Networks Center, this event has been the only M>3 earthquake within the PRE since 1900. The Guangdong–Hong Kong–Macau Bay Area (GHMBA) surrounding the PRE is one of China’s most critical financial circles, and coastal earthquake hazard has become an increasing concern. Investigating the source parameter and causative fault of this earthquake is helpful for seismic hazard estimation and mitigation in the GHMBA. In this study, we first determined the focal mechanism of the mainshock using the cut-and-paste method. We then used the sliding-window cross-correlation method to detect foreshocks and aftershocks before relocating the earthquakes. Finally, we conducted forward modeling to retrieve the rupture directivity of the mainshock, using waveforms of one aftershock as empirical Green’s functions. The results demonstrate that this earthquake was an Mw 3.7 strike-slip event, with a focal depth of 10 km. The rupture direction of the mainshock was 78°, consistent with the northeast-east-trending fault system in the region. The identified source fault confirmed a seismogenic segment of the northeast-east-trending fault system in the PRE, which is the primary source of seismic hazard in the area.


2021 ◽  
Vol 13 (8) ◽  
pp. 1555
Author(s):  
Rosa Nappi ◽  
Valeria Paoletti ◽  
Donato D’Antonio ◽  
Francesco Soldovieri ◽  
Luigi Capozzoli ◽  
...  

We report a geophysical study across an active normal fault in the Southern Apennines. The surveyed area is the “Il Lago” Plain (Pettoranello del Molise), at the foot of Mt. Patalecchia (Molise Apennines, Southern Italy), a small tectonic basin filled by Holocene deposits located at the NW termination of the major Quaternary Bojano basin structure. This basin, on the NE flank of the Matese Massif, was the epicentral area of the very strong 26 July, 1805, Sant’Anna earthquake (I0 = X MCS, Mw = 6.7). The “Il Lago” Plain is bordered by a portion of the right-stepping normal fault system bounding the whole Bojano Quaternary basin (28 km long). The seismic source responsible for the 1805 earthquake is regarded as one of the most hazardous structures of the Apennines; however, the position of its NW boundary of this seismic source is debated. Geological, geomorphological and macroseismic data show that some coseismic surface faulting also occurred in correspondence with the border fault of the “Il Lago” Plain. The study of the “Il Lago” Plain subsurface might help to constrain the NW segment boundary of the 1805 seismogenic source, suggesting that it is possibly a capable fault, source for moderate (Mw < 5.5) to strong earthquakes (Mw ≥ 5.5). Therefore, we constrained the geometry of the fault beneath the plain using low-frequency Ground Penetrating Radar (GPR) data supported by seismic tomography. Seismic tomography yielded preliminary information on the subsurface structures and the dielectric permittivity of the subsoil. A set of GPR parallel profiles allowed a quick and high-resolution characterization of the lateral extension of the fault, and of its geometry at depth. The result of our study demonstrates the optimal potential of combined seismic and deep GPR surveys for investigating the geometry of buried active normal faults. Moreover, our study could be used for identifying suitable sites for paleoseismic analyses, where record of earthquake surface faulting might be preserved in Holocene lacustrine sedimentary deposits. The present case demonstrates the possibility to detect with high accuracy the complexity of a fault-zone within a basin, inferred by GPR data, not only in its shallower part, but also down to about 100 m depth.


1984 ◽  
Vol 121 (5) ◽  
pp. 429-436 ◽  
Author(s):  
C. W. Passchier

AbstractA major ductile shear zone in the gneissic core of the Saint-Barthélemy Massif, central Pyrenees, is characterized by an asymmetric shear strain profile defined as mylonite-dominated footwall geometry. The shear zone is part of a low angle fault system in the massif which caused thinning of a sequence of lithologic units and isograds. The shear zone is interpreted as a low angle normal fault zone of probably Cretaceous age, predating Alpine crustal shortening in the central Pyrenees.


Author(s):  
Ya. Radziminovich ◽  
N. Gileva ◽  
A. Seredkina ◽  
V. Melnikova

We consider the April 27, 2014, Mw=4.9 Dzhirga earthquake, occurred within the north-eastern end of the Barguzin Depression. The event is the second one by energy level in the study area for the period of instrumental observations. The earthquake was followed by an aftershock sequence of 75 weak shocks recorded till the end of the year. The focal mechanism was determined from surface wave records from 13 digital broadband seismic stations of the IRIS networks. The obtained solution demonstrates the normal fault kinematics with both nodal planes striking north-east that corresponds to the regional fault pattern. The focal depth is estimated equal to 19 km. The maximum observed intensity was 5 points on the MSK-64 scale at the epicentral distance of 13 km. The Dzhirga earthquake analysis made it possible to fill in the lack of seismological information about the study area. The data obtained can be used for refinement of seismic hazard assessment of the north of the Barguzin Basin.


2020 ◽  
Vol 113 (1) ◽  
pp. 43-58
Author(s):  
Asma Nasir ◽  
Esther Hintersberger ◽  
Kurt Decker

AbstractAftershock identification plays an important role in the assessment and characterization of large earthquakes. Especially, the length of the aftershock sequence is an important aspect of declustering earthquake catalogues and therefore impacts the frequency of earthquakes in a certain region, which is important for future seismic hazard assessment. However, in intraplate regions with low deformation rates and low to moderate seismicity, it is still questionable if aftershocks after a major event may continue for much longer time. In this study, we use one of the earliest instrumentally recorded earthquakes, the 1906 Dobrá Voda earthquake (Ms/Imax=5.7/VIII-IX), to compare different approaches of aftershock determination and their suitability for understanding the recorded earthquake sequence. The Dobrá Voda segment of the Vienna Basin Transfer Fault System is one of the seismically most active zones in Slovakia with the 1906 earthquake as the strongest recorded earthquake. We first assess the epicentral intensity of the earthquake according to the Environmental Intensity Scale (ESI2007) using contemporary descriptions of earthquake effects. This additional information leads to constrain the maximal intensity to IESI2007=IX. This result agrees well with first the assessment of Imax in 1907 and indicates the reliability of this intensity data. In the second step, earthquake data are plotted for two spatial windows extending 13 km and 26 km from the epicenter of the mainshock, respectively. Despite uncertainties regarding the completeness of data due to war times and lack of nearby seismic stations, the overall temporal evolution of seismicity can apparently not be described as an Omori-type aftershock sequence following the event in 1906. Instead, earthquake occurrence within 13 km of the mainshock shows elevated earthquake activity right after the 1906 event that only decays to a lower level of activity within decades after the mainshock. The decline of seismicity therefore occurs over time scales which are much longer than those predicted by the Omori relation. We conclude that today’s seismic activity may still be affected by the 1906 earthquake.


Sign in / Sign up

Export Citation Format

Share Document