scholarly journals Mental chronometry in big noisy data

2021 ◽  
Author(s):  
Edmund Wascher ◽  
Fariba Sharifian ◽  
Marie Gutberlet ◽  
Daniel Schneider ◽  
Stephan Getzmann ◽  
...  

Temporal measures (latencies) in the event-related potentials of the EEG (ERPs) are a valuable tool for mental chronometry. In large scale studies with a multitude of single EEG-based tasks the quality of latency measures often suffers from high and low frequency noise due to low trial counts (because of compressed tasks) and the missing opportunity of visual inspection. In the present study, we systematically evaluated two different approaches to latency estimation (peak latencies and fractional area latencies) with respect to their data quality and the application of noise reduction by jackknifing methods. Additionally, we tested the recently introduced method of Standardized Measurement Error (SME) to prune the dataset. We demonstrate that fractional area latency in pruned and jackknifed data may amplify within-subjects effect sizes by the factor ten in the analyzed data set. Between-subjects effects were less affected by the applied procedure, but remained stable regardless of procedure.

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. V159-V167 ◽  
Author(s):  
Huijian Li ◽  
Runqiu Wang ◽  
Siyuan Cao ◽  
Yangkang Chen ◽  
Weilin Huang

The frequency of microseismic data is higher than that of conventional seismic data. The range of effective frequency is usually from 100 to 500 Hz, and low-frequency noise is a common disturbance in downhole monitoring. Conventional signal analysis techniques, such as band-pass filters, have their limitation in microseismic data processing when the useful signals and noise share the same frequency band. We have developed a novel method to suppress low-frequency noise in microseismic data based on mathematical morphology theory that aims at distinguishing useful signals and noise according to their tiny differences of waveform. By choosing suitable structure elements, we have extracted low-frequency noise from a original data set. We first developed the fundamental principle of mathematical morphology and the formulation of our approach. Then, we used a synthetic data example that was composed of a Ricker wavelet and low-frequency noise to test the feasibility and performance of the proposed approach. Our results from the synthetic example indicate that the proposed approach can effectively suppress large-scale low-frequency noise while slightly decreasing the small-scale signals. Finally, we have applied the proposed approach to field microseismic data and obtained very encouraging results.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Jona Sassenhagen ◽  
Ryan Blything ◽  
Elena V. M. Lieven ◽  
Ben Ambridge

How are verb-argument structure preferences acquired? Children typically receive very little negative evidence, raising the question of how they come to understand the restrictions on grammatical constructions. Statistical learning theories propose stochastic patterns in the input contain sufficient clues. For example, if a verb is very common, but never observed in transitive constructions, this would indicate that transitive usage of that verb is illegal. Ambridge et al. (2008) have shown that in offline grammaticality judgements of intransitive verbs used in transitive constructions, low-frequency verbs elicit higher acceptability ratings than high-frequency verbs, as predicted if relative frequency is a cue during statistical learning. Here, we investigate if the same pattern also emerges in on-line processing of English sentences. EEG was recorded while healthy adults listened to sentences featuring transitive uses of semantically matched verb pairs of differing frequencies. We replicate the finding of higher acceptabilities of transitive uses of low- vs. high-frequency intransitive verbs. Event-Related Potentials indicate a similar result: early electrophysiological signals distinguish between misuse of high- vs low-frequency verbs. This indicates online processing shows a similar sensitivity to frequency as off-line judgements, consistent with a parser that reflects an original acquisition of grammatical constructions via statistical cues. However, the nature of the observed neural responses was not of the expected, or an easily interpretable, form, motivating further work into neural correlates of online processing of syntactic constructions.


2021 ◽  
Author(s):  
Tzu-Yu Hsu ◽  
Tzu-Ling Liu ◽  
Paul Z. Cheng ◽  
Hsin-Chien Lee ◽  
Timothy J. Lane ◽  
...  

AbstractBackgroundRumination, a tendency to focus on negative self-related thoughts, is a central symptom of depression. Studying the self-related aspect of such symptoms is challenging due to the need to distinguish self effects per se from the emotional content of task stimuli. This study employs an emotionally neutral self-related paradigm to investigate possible altered self processing in depression and its link to rumination.MethodsPeople with unipolar depression (MDD; n = 25) and controls (n = 25) underwent task-based EEG recording. Late event-related potentials were studied along with low frequency oscillatory power. EEG metrics were compared between groups and correlated with depressive symptoms and reported rumination.ResultsThe MDD group displayed a difference in late potentials across fronto-central electrodes between self-related and non-self-related conditions. No such difference was seen in controls. The magnitude of this difference was positively related with depressive symptoms and reported rumination. MDD also had elevated theta oscillation power at central electrodes in self-related conditions, which was not seen in controls.ConclusionsRumination appears linked to altered self-related processing in depression, independently of stimuli-related emotional confounds. This connection between self-related processing and depression may point to self-disorder being a core component of the condition.


2021 ◽  
Vol 11 (11) ◽  
pp. 1506
Author(s):  
Annalisa Tosoni ◽  
Emanuele Cosimo Altomare ◽  
Marcella Brunetti ◽  
Pierpaolo Croce ◽  
Filippo Zappasodi ◽  
...  

One fundamental principle of the brain functional organization is the elaboration of sensory information for the specification of action plans that are most appropriate for interaction with the environment. Using an incidental go/no-go priming paradigm, we have previously shown a facilitation effect for the execution of a walking-related action in response to far vs. near objects/locations in the extrapersonal space, and this effect has been called “macro-affordance” to reflect the role of locomotion in the coverage of extrapersonal distance. Here, we investigated the neurophysiological underpinnings of such an effect by recording scalp electroencephalography (EEG) from 30 human participants during the same paradigm. The results of a whole-brain analysis indicated a significant modulation of the event-related potentials (ERPs) both during prime and target stimulus presentation. Specifically, consistent with a mechanism of action anticipation and automatic activation of affordances, a stronger ERP was observed in response to prime images framing the environment from a far vs. near distance, and this modulation was localized in dorso-medial motor regions. In addition, an inversion of polarity for far vs. near conditions was observed during the subsequent target period in dorso-medial parietal regions associated with spatially directed foot-related actions. These findings were interpreted within the framework of embodied models of brain functioning as arising from a mechanism of motor-anticipation and subsequent prediction error which was guided by the preferential affordance relationship between the distant large-scale environment and locomotion. More in general, our findings reveal a sensory-motor mechanism for the processing of walking-related environmental affordances.


Acoustics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 354-368 ◽  
Author(s):  
Linus Ang ◽  
Yong Koh ◽  
Heow Lee

For industrial applications, the scalability of a finalised design is an important factor to consider. The scaling process of typical membrane-type acoustic metamaterials may pose manufacturing challenges such as stress uniformity of the membrane and spatial consistency of the platelet. These challenges could be addressed by plate-type acoustic metamaterials with an internal tonraum resonator. By adopting the concept of modularity in a large-scale design (or meta-panel), the acoustical performance of different specimen configurations could be scaled and modularly combined. This study justifies the viability of two meta-panel configurations for low-frequency (80–500 Hz) noise control. The meta-panels were shown to be superior to two commercially available noise barriers at 80–500 Hz. This superiority was substantiated when the sound transmission class (STC) and the outdoor-indoor transmission class (OITC) were compared. The meta-panels were also shown to provide an average noise reduction of 22.7–27.4 dB at 80–400 Hz when evaluated in different noise environments—traffic noise, aircraft flyby noise, and construction noise. Consequently, the meta-panel may be further developed and optimised to obtain a design that is lightweight and yet has good acoustical performance at below 500 Hz, which is the frequency content of most problematic noises.


2011 ◽  
Vol 106 (6) ◽  
pp. 3216-3229 ◽  
Author(s):  
L. Hu ◽  
M. Liang ◽  
A. Mouraux ◽  
R. G. Wise ◽  
Y. Hu ◽  
...  

Across-trial averaging is a widely used approach to enhance the signal-to-noise ratio (SNR) of event-related potentials (ERPs). However, across-trial variability of ERP latency and amplitude may contain physiologically relevant information that is lost by across-trial averaging. Hence, we aimed to develop a novel method that uses 1) wavelet filtering (WF) to enhance the SNR of ERPs and 2) a multiple linear regression with a dispersion term (MLRd) that takes into account shape distortions to estimate the single-trial latency and amplitude of ERP peaks. Using simulated ERP data sets containing different levels of noise, we provide evidence that, compared with other approaches, the proposed WF+MLRd method yields the most accurate estimate of single-trial ERP features. When applied to a real laser-evoked potential data set, the WF+MLRd approach provides reliable estimation of single-trial latency, amplitude, and morphology of ERPs and thereby allows performing meaningful correlations at single-trial level. We obtained three main findings. First, WF significantly enhances the SNR of single-trial ERPs. Second, MLRd effectively captures and measures the variability in the morphology of single-trial ERPs, thus providing an accurate and unbiased estimate of their peak latency and amplitude. Third, intensity of pain perception significantly correlates with the single-trial estimates of N2 and P2 amplitude. These results indicate that WF+MLRd can be used to explore the dynamics between different ERP features, behavioral variables, and other neuroimaging measures of brain activity, thus providing new insights into the functional significance of the different brain processes underlying the brain responses to sensory stimuli.


2010 ◽  
Vol 28 (6) ◽  
pp. 1273-1288 ◽  
Author(s):  
E. E. Grigorenko ◽  
T. M. Burinskaya ◽  
M. Shevelev ◽  
J.-A. Sauvaud ◽  
L. M. Zelenyi

Abstract. We present a comprehensive analysis of magnetic field and plasma data measured in the course of 170 crossings of the lobeward edge of Plasma Sheet Boundary Layer (PSBL) in the Earth's magnetotail by Cluster spacecraft. We found that large-scale fluctuations of the magnetic flux tubes have been registered during intervals of propagation of high velocity field-aligned ions. The observed kink-like oscillations propagate earthward along the main magnetic field with phase velocities of the order of local Alfvén velocity and have typical wavelengths ~5–20 RE, and frequencies of the order of 0.004–0.02 Hz. The oscillations of PSBL magnetic flux tubes are manifested also in a sudden increase of drift velocity of cold lobe ions streaming tailward. Since in the majority of PSBL crossings in our data set, the densities of currents corresponding to electron-ion relative drift have been low, the investigation of Kelvin-Helmholtz (K-H) instability in a bounded flow sandwiched between the plasma sheet and the lobe has been performed to analyze its relevance to generation of the observed ultra-low frequency oscillations with wavelengths much larger than the flow width. The calculations have shown that, when plasma conditions are favorable for the excitation of K-H instability at least at one of the flow boundaries, kink-like ultra-low frequency waves, resembling the experimentally observed ones, could become unstable and efficiently develop in the system.


1993 ◽  
Vol 76 (3_suppl) ◽  
pp. 1231-1241 ◽  
Author(s):  
Gary C. Galbraith ◽  
John M. Kane

Human brainstem frequency-following responses (FFRs) and cortical event-related potentials (ERPs) were evoked by a low-frequency (230 Hz) tone during directed attention. ERPs showed significant amplitude differences consistent with expected attention effects, viz., largest to attended stimuli and smallest to ignored stimuli. The ERP data thereby confirm that attention effectively modulated cortical responses. The FFR, however, did not differ between conditions. The present results agree with one earlier FFR study and a majority of studies using click stimuli to elicit the brainstem auditory evoked response (BAER). However, several BAER studies and two recent FFR studies have shown that attention can influence human brainstem responses. The present results are therefore interpreted in the context of specific task requirements that optimize early selective attention effects.


Sign in / Sign up

Export Citation Format

Share Document