scholarly journals Column Study of Nitrate Downward Movement and Selected Soil Chemical Properties’ Changes in Mine Spoiled Soil as Influenced by Liquid Organic Fertilizer

2017 ◽  
Author(s):  
Zainal Muktamar ◽  
Sari Hasibuan ◽  
Dotti Suryati ◽  
Nanik Setyowati

Open pit coal mining is common practice to extract coal from lithosphere. This system, however, will bring about soil degradation. Organic fertilization is an alternative to recover fertility of the degraded soil. The objectives of the experiment were to determine nitrate downward movement and change of selected chemical properties in the soil column and to compare the growth of lamtoro (Leucaena leucocephala) as affected by local based liquid organic fertilizer. Column experiment was conducted using mine spoiled soil from Taba Penanjung Sub-District, Central of Bengkulu District, Bengkulu, Indonesia located at approximately 364.5 m above sea level. The experimental design was Completely Randomized Design with 3 treatments consisting of control, 75 and 150 ppm of local based liquid organic fertilizer (LOF). The treatment was replicated 3 times. Soil column was prepared using PVC pipe with diameter of 12.5 cm and length of 40 cm. Soil sample was put into the column and compacted by knocking the base of the column until the soil height achieved 35 cm. Lamtoro was raised in the column for 11 weeks. At the end of experiment, lamtoro shoot was cut and the PVC column was cleaved horizontally and soil was pushed out from the column. Soil sample was, then, sliced into 6 fractions, representing depth of 0-5, 5-10, 10-15, 15-20, 20-25, and > 25 cm. Fresh soil sample from each depth was extracted by distillated water and analyzed for NO3- N. Remaining of soil samples was air-dried for 72 hours, grinded with 0.5 mm screen, and analyzed for available P, exchangeable K, soil pH and exchangeable Al. The experiment indicated that local based liquid fertilizer significantly increased soil NO3-N, available P, exchangeable K, soil pH and reduced exchangeable Al. Higher rates of LOF caused increase in selected soil chemical properties but exchangeable Al. However, NO3-N was potential to move downward to deeper depth of the soil profile. Change of exchangeable Al, soil pH and exchangeable K was observed until 20-25 m depth of soil profile, but change of available P was detected only to 10-15 cm depth. Better soil chemical properties were followed by enhancement of lamtoro growth.

2018 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Tristantia Anggita ◽  
Zainal Muktamar ◽  
Fahrurrozi Fahrurrozi

Recently, application of liquid organic fertilizer (LOF) in organic farming practices is of importance to prevent further soil degradation due to prolong and massive use of synthetic fertilizer. LOF provides faster plant nutrients than soil organic fertilizer. However, quality of LOF is substantially dependent on its sources. Animal wastes from rabbit, goat, and cattle are scarcely used as sources of LOF production. The study aimed to determine soil chemical improvement and potassium uptake by mung bean  as affected by LOF in Ultisol. The experiment was conducted at the Greenhouse Faculty of Agriculture, employing Completely Randomized Design with two factors. The first factor was animal wastes, consisting of goat, rabbit, and cattle wastes. The second factor was LOF concentration, consisting of 0%, 25%, 50%, 75%, and 100% LOF. LOF was prepared by mixing altogether animal feces, urine, soil, green biomass, EM-4 and fresh water to total volume of 10 l in a plastic container. LOF was decanted to the polybag every week starting at one week after planting for four weeks to a total volume of 750 ml per polybag. Variables observed included soil pH, total organic-C, exchangeable K, soil nitrate-N, K concentration in plant tissue, K-uptake, and shoot dry weight of sweet corn The result showed that application of LOF from rabbit waste had the highest increment of soil pH as compared to the other treatment. However, exchangeable K was observed highest at the treatment of LOF from goat waste. Sources of LOF from animal wastes did not have an effect on K-uptake by mung bean. In addition, application of LOF up to 100% was able to improve soil chemical properties as indicated by the increase in soil pH and exchangeable K. So did the concentration and uptake of K, as well as shoot dry weight. Fertilization with LOF has benefit to the improvement of soil chemical properties leading to better K uptake.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2222
Author(s):  
Puvan Paramisparam ◽  
Osumanu Haruna Ahmed ◽  
Latifah Omar ◽  
Huck Ywih Ch’ng ◽  
Ali Maru ◽  
...  

In Ultisols and Oxisols, potassium (K) in the soil solution is leached from the rhizosphere before it interacts with soil colloids, or exchanged with other cations at the exchange sites of the soils because of the abundance of kaolinite clay minerals. These soils are highly weathered, low in organic matter, and low in pH, but high aluminium (Al) and iron (Fe) ions. Hence, K becomes unavailable for plants, and this compromises crop production and farmers’ profitability. The pH neutralizing effects of sago (Metroxylon sagu) bark ash and the ability of charcoal to chelate Al and Fe could be utilized to improve soil pH, reduce soil acidity, and improve K availability. The objective of this study was to determine the effects of amending muriate of potash (MOP) with charcoal and sago bark ash on selected soil chemical properties in a tropical acid soil (Typic Paleudults) over 90 days in a laboratory incubation. The proportions of charcoal and sago bark ash were varied at 20%, 40%, 60%, 80%, and 100%, but the MOP was fixed at 100% of the recommended rate. Selected soil chemical properties before and after incubation were determined using standard procedures. Results revealed that co-application of the soil amendments with MOP increased soil-exchangeable K compared with conventional practice. Moreover, amending the acid soil with charcoal and sago bark ash positively enhanced the availability of other base cations and soil cation exchange capacity (CEC). This was possible because the amendments increased soil pH and reduced exchangeable acidity, exchangeable Al3+, and exchangeable Fe2+. However, there was no significant improvement in water-soluble K (WSK) in the soil with or without charcoal and sago bark over the 90 days laboratory study. The findings of this study suggested that increasing soil pH could potentially improve soil K sorption capacity. Thus, the optimum rates of charcoal and sago bark ash to increase K availability were found to be 80% charcoal with 80% sago bark ash, 60% charcoal with 60% sago bark ash, and 80% charcoal with 40% sago bark ash, because these rates improved soil-exchangeable K+ and CEC significantly, besides minimizing soil-exchangeable acidity.


2018 ◽  
Vol 3 (3) ◽  
pp. 20-30
Author(s):  
Fajrial Lisha ◽  
Zuraida Zuraida ◽  
Teti Arabia

Abstrak. Penelitian ini bertujuan untuk mengetahui pengaruh kombinasi mulsa jagung dan pupuk NPK serta budidaya berbagai macam tanaman terhadap sifat kimia tanah pada Ultisol. Tanman yang digunakan pada penelitian ini berupa tanaman jagung, kacang tanah, dan kedelai. Penelitian menggunakan Rancangan Petak Terpisah pola RAK 3 x 4 dengan tiga ulangan dan 12 perlakuan . Faktor yang diteliti yaitu jenis tanaman dan mulsa jagung. Faktor pertama yaitu jenis tanaman terdiri dari tiga taraf yaitu ; jagung, kedelai dan kacang tanah. Faktor kedua mulsa jagung terdiri atas empat taraf  yaitu ; kontrol, tanpa mulsa, mulsa jagung 5 ton ha-1 dan mulsa jagung 10 ton ha-1 . Hasil penelitian menunjukkan bahwa perlakuan jenis tanaman  memberikan pengaruh nayata terhadap K-dd tanah. Terdapat pengaruh interaksi antara perlakuan jenis tanaman dan mulsa jagung terhadap P-tersedia.The effects of Mulching Maize Combination and NPK Fertilizer with Maize, Soybean and Groundnut cultivation in Soil Chemical Properties of UltisolAbstract. This research aims to know the effects of mulching maize combination and NPK fertilizer with plant cultivation on dry land of Ultisol towards some soil chemical properties. The types of plants that have been used in this research are Maize, Soybean and Groundnut. The experimental layout was a split plot design by 3 x 4 RCBD with three replications and 12 combinations. The first factor is types of plants, consisting of three levels ie: Maize, Soybean, and Groundnut. The second factor is moulching maize consists of four levels ie; control, without mulch, mulching maize 5 ton ha-1 and mulching maize 10 ton ha-1. The results showed that the treatment of types of plants affected the exchangeable K. There is an interaction between types of plants and mulching maize towards the available P.


1969 ◽  
Vol 77 (3-4) ◽  
pp. 181-191 ◽  
Author(s):  
Julia M. O’Hallorans ◽  
Miguel A. Muñoz ◽  
Octavio Colberg

An experiment was established on a San Antón soil (Cumulic Haplustolls) in southern Puerto Rico to evaluate the effect of chicken manure (0, 5, 10 and 15 t/ha) and nitrogen fertilizer (0, 56, 112 and 168 kg/h) on some soil chemical properties and tomato production. Chicken manure was broadcast and incorporated into the soil whereas urea, the nitrogen source, was applied by fertigation. A significant lineal effect was observed in exchangeable Mg2+ and K+, electrical conductivity and Olsen available P with chicken manure applications. In the check treatment (no manure), exchangeable Mg2+ was 2.54cmolc/kg; exchangeable K+, 0.99 cmol./kg; electrical conductivity, 0.79 mmhos/cm; and available P, 52.58 mg/kg. The application of 15 t/ha of chicken manure increased exchangeable Mg2+ to 2.70 cmolc/kg, exchangeable K+ to 1.29 cmolc/kg, electrical conductivity to 2.22 mmhos/cm and available P to 83.98 mg/kg. Soil pH decreased significantly with the same treatment from 7.50 in the check treatment to 6.98 in the 15 t/ha chicken manure treatment. Chicken manure increased soil exchangeable NO3- at a depth of 20 cm, but did not increase exchangeable NH4+.  Application of chicken manure did not increase tomato yield significantly; however, it increased significantly the number of large and medium fruits. It is suggested that an exchangeable NO3- content of about 15 to 20 mg/kg is adequate for optimum tomato production in a San Antón soil.


2022 ◽  
Vol 9 (1) ◽  
pp. 171-179
Author(s):  
Pipit Tandyana Febriantika ◽  
Faris Nur Fauzi Athallah ◽  
Restu Wulansari ◽  
Didik Suprayogo

Tea plantations are mostly more suitable to be cultivated in areas with highland characteristics to get its’ subtropical climate which is great for the growth of tea. This requirement showed that tea plantations are also cultivated in areas with different ranges of slope and this condition could affect soil chemical properties such as soil nutrient content, including soil pH, soil organic carbon (SOC) and contents of N, Available P, K and Mg inside the soil. This study was conducted to analyze the correlation on different slope levels with soil nutrient contents by collecting the secondary data of land slope and soil chemical properties, analyzed statistically with a simple correlation method. The result showed there was no significant correlation between the slope levels and contents of soil chemical properties. Most of the soil chemical properties have a negative correlation to different slope gradients such as soil pH (r = -0.391), SOC (r = -0.348), total N ( r = -0.169), Available P (r = - 0.039), K content (r = -0.135), Mg content (r = -0.027). where the highest levels of nutrients were found at the lowest level of slope based on the site data. Soil chemical properties are needed to be considered in many tea plantations with different levels of slope and could be used as a recommendation in planning for conservation or restoration of degraded land or soil.


Soil Research ◽  
2002 ◽  
Vol 40 (7) ◽  
pp. 1171 ◽  
Author(s):  
Damayanthi Peiris ◽  
Antonio F. Patti ◽  
W. Roy Jackson ◽  
Marc Marshall ◽  
Christopher J. Smith

Previous workers have demonstrated the amelioration of soil acidity with Ca-saturated, at least slightly soluble, organic materials. This study investigated the effectiveness of a new source of such materials, the humate- or fulvate-rich products of oxidation (hydrogen peroxide) of Loy Yang brown coal. The products were characterised by physical and spectroscopic measurements and by elemental analysis. Two products, one approximately half fulvate (fulvate-rich), the other predominantly humate (humate-rich) were mixed with CaCl2 and then used to treat columns of an acid red podzol soil from Book Book, NSW. Leachate fractions were collected and analysed for pH, ionic strength, and concentration of Ca, Mg, K, Mn, Fe, and Al. After leaching (3 pore volumes), each soil column was sectioned and exchangeable Ca and Al contents were determined. The results were compared with those obtained from lime-treated and untreated columns.The Ca-fulvate-rich product was the most effective in lowering the exchangeable Al content of the soil whilst increasing exchangeable Ca and soil pH. About 90% of the reduction in exchangeable Al was due to loss of Al in the leachate rather than immobilisation. The pH increased over the top 15 cm of the column from 3.8 ± 0.1 to 4.5–5.4. The Ca-humate-rich oxidised product was less effective in ameliorating soil acidity, as expected from its chemical properties, but it increased soil pH (to 4.0–4.7) and exchangeable Ca in the top 6 cm of the column and decreased exchangeable Al in the top 12 cm. More of the reduction in exchangeable Al than for the treatment with Ca-fulvate-rich material was due to conversion to an immobile form. This material was superior to lime, which only gave significant improvement near the soil surface. The leachates from treated columns contained the same amounts of Mg, Mn, and K as a control, but more Fe was leached from treated columns, particularly that treated with the Ca-fulvate-rich product.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fikeremareyam Chulo ◽  
Fanuel Laekemariam ◽  
Alemayehu Kiflu

Understanding the nutrient dynamics in acid soil is fundamental to carry out proper management. The study was conducted to investigate phosphorus (P) pools and selected properties under different rates of lime for acid nitisols of Farawocha, Southern Ethiopia. Four lime rates incubated for a month in three replications were tested. The lime rates were 0 t/ha (0%), 5.25 t/ha (50%), 10.5 t/ha (100%), and 15.75 t/ha (150%). Lime requirement (LR) for 100% was calculated targeting soil pH of 6.5. Data on the P pools such as soluble P (P-sol) and bounded forms of P with iron (Fe-P), aluminum (Al-P), calcium (Ca-P), organic part (Org-P), residual P (Res-P), and total of P fractions were measured. In addition, changes in soil chemical properties such as pH, exchangeable acidity, calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), copper (Cu), boron (B), zinc (Zn), and manganese (Mn) were analyzed. The result showed that total P was 357.5 mg/kg. Compared to nontreated soil, liming at a rate of 15.75 t/ha significantly improved P-sol (34.2%, r2 = 0.88), Ca-P (61.6%, r2 = 0.92), and Res-P (195%, r2 = 0.94); however, it reduced Fe-P (58.5%, r2 = −0.83), Al-P (71%, r2 = −0.97), and Org-P (19.1%, r2 = 0.93). Overall, the P-associated fractions in the soil, regardless of the lime rates, were in the order of Org_P > Res_P > Fe_P > Ca_P > Al_P > P-sol. Liming raised soil pH by 2.1 units (4.5 to 6.6) over nonlimed soil, whereas it reduced exchangeable acidity from 4.18 to 0.23 meq/100 g soil. Available P, Ca, Mg, S, Cu, Zn, and B contents were significantly improved with lime application. However, liming reduced Fe and Mn contents. In conclusion, these findings showed that liming facilitated the release of P from various pools, modified pH and exchangeable acidity, and resulted in beneficial changes for most of the soil chemical properties.


Author(s):  
Atef A. A. Sweed ◽  
Ahmed A. M. Awad

Low soil organic matter, low nutrient availability and the higher soil pH (more than 8) are the major problem of agricultural practices in region of Toshka. An incubation trial at October 2019 was conducted to investigate the effect of potassium humate (KH) and micronic sulfur (MS) on some chemical properties of different soils (sandy clay soils, loamy sand and sandy soils). The used amendments (KH and MS) were added to the studied soil at 4 levels of each amendment i.e. 0.0, 0.25, 0.50 and 1.0%. A two way randomized completely block design and provided with three replications. Studied parameters were included soil pH, EC, exchange Na and the content of available - P and K. Results showed that, the MS application at 1% level caused a significant decrease in soil pH values compared with the KH application and control treatment. These reductions were more pronounced in case of soil B (loamy sand). Also, KH application gave an increase on exchange Na and available-K. While MS application was cause an increased in soil EC and available-P in the three soils under study. Moreover, the increases in the percentage of available – K with added of KH were higher than added of MS for soils under study. While the percentages of available-P with added of KH were higher than with added of MS for studied soils. It may be recommended to add KH and MS at a rate of 1% to improve the soil chemical properties. But the effect of application from MS has greater than KH to increase dissolved sodium salts on the form of sodium sulfate, which facilitates disposal during soil drainage.


2020 ◽  
Author(s):  
Yadesa Bato ◽  
Tamrat Bekele ◽  
Sebsebe Demissew

Abstract Background: Soil chemical properties have changed under different land-use systems and soil depth layers either by increasing or decreasing. Hence, scientifically information on the soil chemical properties dynamics under different land-use systems and soil depths are crucial for best land management practices, and to avoiding ecological negative impacts of it for sustainable development. The study aimed to evaluate the soil chemical properties dynamics under different land-use systems and soil depths in the central highlands of Ethiopia. The land-use systems included natural forest, four exotic tree plantation species (Eucalyptus globules, Cupressus lusitanica, Grevillea robusta, and Pinus patula), grassland, grazing land, and cropland. Results: The analysis of variance (ANOVA) for the majority of soil chemical properties of OC, TN, Avial. P, soil pH, EC, CEC, and exchangeable bases (Ca, Mg, K, Na) were showed that significant variations among land-use systems (P<0.0001). The highest mean values of OC (3.49 % DM ), TN ( 0.31 % DM) , Avail.P (31.52 mg/kg of soil ), CEC ( 33.63 meq/100gm soil), Exch. Ca (17.13 cmol(+)/kg soil), Exch. Mg (5.37 cmol(+)/kg soil), and Exch. K ( 3.60 cmol(+)/kg soil) were observed under natural forest than others of land-use systems. The results also showed that the lowest mean values of OC (1.47 % DM), TN (0.13 %DM), soil pH (5.38), CEC (18.98 meq/100gm soil), Exch. Ca (9.93 cmol(+)/kg soil), Exch. K (1.20 cmol(+)/kg soil), and Exch. Na (0.22 cmol(+)/kg soil) were recorded under cropland than other land-use systems. The highest mean values of EC (3.47ds/m), and Exch. Na (0.60 cmol(+)/kg soil) were observed under Eucalyptus globulus plantation forest. The overall mean values of OC, TN, Avail.P, CEC, Exch. Mg, Exch. Ca, Exch. K, and Exch. Na accumulation at the topsoil layer was higher than that of the subsoil layer except for soil pH and EC. Conclusion: In general, the majority of soil chemical properties under cropland and Eucalyptus globulus plantation forest were poorer than the soils subjected to other land-use systems which indicated that changes in land use systems were significantly affected soil chemical properties.


Sign in / Sign up

Export Citation Format

Share Document