scholarly journals Short Note on Space Wind Powered by Disorder: Dark Energy

2018 ◽  
Author(s):  
Mesut Kavak

After midnight just before sleeping, I noticed in my bed, that free space itself can cause a parachute effect on the moving bodies especially the bodies move in low gravitational fields like in Pioneer Anomaly. Because of this reason, while speed of a satellite is decreasing, speed of another one which spins around the world on different axis can increase; a satellite wandering in interstellar medium can speed up as also it can slow down; low frequency light and high frequency light behave differently; galaxies have lower mass can spin faster since mutual gravitation is not only option. These are only a few examples.

2020 ◽  
Author(s):  
B Espen Eckbo ◽  
Michael Kisser

Abstract We test whether high-frequency net-debt issuers (HFIs)—public industrial companies with relatively low issuance costs and high debt-financing benefits—manage leverage toward long-run targets. Our answer is they do not: (1) the leverage–profitability correlation is negative even in quarters with leverage rebalancing; (2) the speed-of-adjustment to target leverage deviations is no higher for HFIs than for low-frequency net-debt issuers; and (3) under-leveraged HFIs do not speed up rebalancing activity in significant investment periods. Thus, even in the subset of firms most likely to follow dynamic trade-off theory, the theory does not appear to hold.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ying-Shen Juang ◽  
Hsi-Chin Hsin ◽  
Tze-Yun Sung ◽  
Carlo Cattani

Wavelet packet transform known as a substantial extension of wavelet transform has drawn a lot of attention to visual applications. In this paper, we advocate using adaptive wavelet packet transform for texture synthesis. The adaptive wavelet packet coefficients of an image are organized into hierarchical trees called adaptive wavelet packet trees, based on which an efficient algorithm has been proposed to speed up the synthesis process, from the low-frequency tree nodes representing the global characteristics of textures to the high-frequency tree nodes representing the local details. Experimental results show that the texture synthesis in the adaptive wavelet packet trees (TSIAWPT) algorithm is suitable for a variety of textures and is preferable in terms of computation time.


2021 ◽  
Author(s):  
Sankar Subramanian

Abstract Domestication of wild animals results in a reduction in the effective population size and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to accumulation deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using the whole genome data from 432 animals belonging to 54 cattle breeds of the world. Our analysis revealed a negative correlation between the genomic heterozygosity and the ratio of amino acid changing diversity to silent diversity. This suggests a proportionally higher amino acid changing Single Nucleotide variants (SNVs) in breeds with low diversity. Our results also showed that breeds with low diversity had more high-frequency (DAF > 0.51) deleterious SNVs than those with high diversity. A reverse trend was observed for the low-frequency (DAF ≤ 0.51) deleterious SNVs. Overall, taurine cattle breeds had more high-frequency deleterious SNVs than indicine (or taurine-indicine hybrid) breeds. However, within taurine breeds European or Northeast Asian taurines had more high-frequency deleterious SNVs than East Asian or African taurine breeds. Similarly, within indicine breeds South Asian indicines had more high-frequency deleterious SNVs than East Asian indicine breeds. All the above observed patterns were reversed for low frequency deleterious SNVs. Some of the variation in the deleterious mutation load observed between different breeds could be attributed to the population sizes of the wild progenitors before domestication. However, the variations observed withing taurine and within indicine breeds could be due to the difference in the extent of inbreeding, strength of artificial selection and/or founding population size. The findings of this study imply that the rate of incidence of genetic diseases might vary between cattle breeds.


2021 ◽  
pp. 53-81
Author(s):  
Harvey Whitehouse

Collective rituals tend to come in two kinds: frequently performed but relatively lowkey; rarely enacted but emotionally intense. According to the theory of modes of religiosity, high-frequency but low-arousal rituals produce large-scale hierarchical groups (the doctrinal mode), while low-frequency but high-arousal rituals produce small-scale highly cohesive groups (the imagistic mode). This chapter describes how that theory was first developed while carrying out fieldwork in the New Guinea rainforest. But then the author realized it could help to explain how groups throughout the world take shape and spread, and it could also help to explain how complex societies evolved.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6606
Author(s):  
Jiabao Du ◽  
Changxi Yue ◽  
Ying Shi ◽  
Jicheng Yu ◽  
Fan Sun ◽  
...  

This paper proposes a new frequency decomposition-based hybrid reactive power forecasting algorithm, EEMD-LSTM-RFR (ELR), which adopts a strategy of frequency decomposition prediction after ensemble empirical mode decomposition and then data reconstruction to improve the prediction ability of reactive power. This decomposition process can compress the high frequency of reactive power and benefits the following separate forecasting. Long short-term memory is proposed for the high-frequency feature of reactive power to deal with the forecasting difficulty caused by strong signal disturbance and randomness. In contrast, random forest regression is applied to the low-frequency part in order to speed up the forecasting. Four classical algorithms and four hybrid algorithms based on different signal decompositions are compared with the proposed algorithm, and the results show that the proposed algorithm outperforms those algorithms. The predicting index RMSE decreases to 0.687, while the fitting degree R2 gradually approaches 1 with a step-by-step superposition of high-frequency signals, indicating that the proposed decomposition-predicting reconstruction strategy is effective.


Author(s):  
PING GUO ◽  
HONGZHAI LI ◽  
MICHAEL R. LYU

In this paper, we present a novel technique for restoring a blurred noisy image without any prior knowledge of the blurring function and the statistics of noise. The technique combines wavelet transform with radial basis function (RBF) neural network to restore the given image which is degraded by Gaussian blur and additive noise. In the proposed technique, the wavelet transform is adopted to decompose the degraded image into high frequency parts and low frequency part. Then the RBF neural network based technique is used to restore the underlying image from the given image. The inverse principal element method (IPEM) is applied to speed up the computation. Experimental results show that the proposed technique inherited the advantages of wavelet transform and IPEM, and the algorithm is efficient in computation and robust to the noise.


Geophysics ◽  
1967 ◽  
Vol 32 (1) ◽  
pp. 124-125 ◽  
Author(s):  
Yosio Nakamura

In his short note, Gupta has shown that the dispersive effect of a finely layered medium may be responsible for some of the anomalous observations in explosive and earthquake investigations. In his note, the phase velocity of waves propagating perpendicular to a horizontally stratified structure at its low-frequency limit is compared with that at the high-frequency limit, and consequently a time delay for low-frequency waves has been denoted. The following discussion shows by a further calculation that a still greater time delay can be expected in other frequencies. The result will be of further help for the interpretations given in the subject note.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


Sign in / Sign up

Export Citation Format

Share Document