scholarly journals A histamine gene expression program in human macrophages.

2020 ◽  
Author(s):  
Shahan Mamoor

The significance of histamine signaling in septic shock is debated (1-5). The macrophage is one of the critical cell types that provide rapid immune responses to early events in septic shock (6-11). To understand in a systematic and unbiased manner the transcriptional behavior of macrophage in response to the immunologic effector histamine, we used a public dataset (12) to describe the most significant changes in the gene expression program of human primary macrophages from response to histamine exposure. We found that of the genes whose expression was most different between macrophages exposed to histamine and the naïve macrophage there were a selection of the genes whose expression could be assigned to 22 discrete modules, including genes encoding enzymes involved in glycosylation, the mitochondria and metabolism, the quality control and translation of proteins, the ER stress response, the Rab family of molecules, genes that bind or encode molecules involved in genetic and epigenetic modulation of DNA and RNA, CXCL5, and the cyclin dependent kinase CDK14. It appears that macrophages respond to histamine exposure by altering gene expression at a relatively large number of loci but by a relatively small order of magnitude.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


2002 ◽  
Vol 277 (48) ◽  
pp. 46840
Author(s):  
Christophe Grundschober ◽  
Maria Luisa Malosio ◽  
Laura Astolfi ◽  
Tiziana Giordano ◽  
Patrick Nef ◽  
...  

2018 ◽  
Vol 154 (6) ◽  
pp. S-585
Author(s):  
Sarah F. Andres ◽  
Kathy N. Williams ◽  
Kathryn E. Hamilton ◽  
Rei Mizuno ◽  
Jeff Headd ◽  
...  

2017 ◽  
Vol 1 (Special Issue) ◽  
pp. 108-108
Author(s):  
Aksheev Bhambri ◽  
Neeraj Dhaunta ◽  
Surendra Singh Patel ◽  
Beena Pillai

2020 ◽  
Author(s):  
Róbert Pálovics ◽  
Andreas Keller ◽  
Nicholas Schaum ◽  
Weilun Tan ◽  
Tobias Fehlmann ◽  
...  

Slowing or reversing biological ageing would have major implications for mitigating disease risk and maintaining vitality. While an increasing number of interventions show promise for rejuvenation, the effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. We performed single-cell RNA-sequencing on 13 organs to reveal cell type specific responses to young or aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, hematopoietic stem cells, hepatocytes, and endothelial cells from multiple tissues appear especially responsive. On the pathway level, young blood invokes novel gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. Intriguingly, we observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it. Altogether, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


Sign in / Sign up

Export Citation Format

Share Document