scholarly journals Cryoturbation leads to iron-organic carbon associations along a permafrost soil chronosequence in northern Alaska

2021 ◽  
Author(s):  
Hanna Joss ◽  
Monique Patzner ◽  
Markus Maisch ◽  
Carsten Mueller ◽  
Andreas Kappler ◽  
...  

In permafrost soils, substantial amounts of organic carbon (OC) are potentially protected from microbial degradation and transformation into greenhouse gases by association with reactive iron (Fe) minerals. As permafrost environments respond to climate change, increased drainage of thaw lakes in permafrost regions is predicted. Soils will subsequently develop on these drained thaw lakes, but the role of Fe-OC associations in future OC stabilization during this predicted soil development is unknown. To fill this knowledge gap, we have examined Fe-OC associations in organic, cryoturbated and mineral horizons along a 5500-year chronosequence of drained thaw lake basins in Utqiaġvik, Alaska. By applying chemical extractions, we found that ~17 % of the total OC content in cryoturbated horizons is associated with reactive Fe minerals, compared to ~10 % in organic or mineral horizons. As soil development advances, the total stocks of Fe-associated OC more than double within the first 50 years after thaw lake drainage, because of increased storage of Fe-associated OC in cryoturbated horizons (from 8 to 75 % of the total Fe-associated OC stock). Spatially-resolved nanoscale secondary ion mass spectrometry showed that OC is primarily associated with Fe(III) (oxyhydr)oxides which were identified by 57Fe Mössbauer spectroscopy as ferrihydrite. High OC:Fe mass ratios (>0.22) indicate that Fe-OC associations are formed via co-precipitation, chelation and aggregation. These results demonstrate that, given the proposed enhanced drainage of thaw lakes under climate change, OC is increasingly incorporated and stabilized by the association with reactive Fe minerals as a result of soil formation and increased cryoturbation.

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Rodrigo Antón ◽  
Francisco Javier Arricibita ◽  
Alberto Ruiz-Sagaseta ◽  
Alberto Enrique ◽  
Isabel de Soto ◽  
...  

Author(s):  
Ziwei Xiao ◽  
Xuehui Bai ◽  
Mingzhu Zhao ◽  
Kai Luo ◽  
Hua Zhou ◽  
...  

Abstract Shaded coffee systems can mitigate climate change by fixation of atmospheric carbon dioxide (CO2) in soil. Understanding soil organic carbon (SOC) storage and the factors influencing SOC in coffee plantations are necessary for the development of sound land management practices to prevent land degradation and minimize SOC losses. This study was conducted in the main coffee-growing regions of Yunnan; SOC concentrations and storage of shaded and unshaded coffee systems were assessed in the top 40 cm of soil. Relationships between SOC concentration and factors affecting SOC were analysed using multiple linear regression based on the forward and backward stepwise regression method. Factors analysed were soil bulk density (ρb), soil pH, total nitrogen of soil (N), mean annual temperature (MAT), mean annual moisture (MAM), mean annual precipitation (MAP) and elevations (E). Akaike's information criterion (AIC), coefficient of determination (R2), root mean square error (RMSE) and residual sum of squares (RSS) were used to describe the accuracy of multiple linear regression models. Results showed that mean SOC concentration and storage decreased significantly with depth under unshaded coffee systems. Mean SOC concentration and storage were higher in shaded than unshaded coffee systems at 20–40 cm depth. The correlations between SOC concentration and ρb, pH and N were significant. Evidence from the multiple linear regression model showed that soil bulk density (ρb), soil pH, total nitrogen of soil (N) and climatic variables had the greatest impact on soil carbon storage in the coffee system.


2016 ◽  
Vol 128 (3) ◽  
pp. 385-396 ◽  
Author(s):  
Catherine M. Dieleman ◽  
Zoë Lindo ◽  
James W. McLaughlin ◽  
Aaron E. Craig ◽  
Brian A. Branfireun

2021 ◽  
Author(s):  
Yuehong Shi ◽  
Xiaolu Tang ◽  
Peng Yu ◽  
Li Xu ◽  
Guo Chen ◽  
...  

<p>Soil carbon turnover time (τ, year) is an important indicator of soil carbon stability, and a major factor in determining soil carbon sequestration capacity. Many studies investigated τ in the topsoil or the first meter underground, however, little is known about subsoil τ (0.2 – 1.0 m) and its environmental drivers, while world subsoils below 0.2 m accounts for the majority of total soil organic carbon (SOC) stock and may be as sensitive as that of the topsoil to climate change. We used the observations from the published literatures to estimate subsoil τ (the ratio of SOC stock to net primary productivity) in grasslands across China and employed regression analysis to detect the environmental controls on subsoil τ. Finally, structural equation modelling (SEM) was applied to identify the dominant environmental driver (including climate, vegetation and soil). Results showed that subsoil τ varied greatly from 5.52 to 702.17 years, and the mean (± standard deviation) subsoil τ was 118.5 ± 97.8 years. Subsoil τ varied significantly among different grassland types that it was 164.0 ± 112.0 years for alpine meadow, 107.0 ± 47.9 years for alpine steppe, 177.0 ± 143.0 years for temperate desert steppe, 96.6 ± 88.7 years for temperate meadow steppe, 101.0 ± 75.9 years for temperate typical steppe. Subsoil τ significantly and negatively correlated (p < 0.05) with vegetation index, leaf area index and gross primary production, highlighting the importance of vegetation on τ. Mean annual temperature (MAT) and precipitation (MAP) had a negative impact on subsoil τ, indicating a faster turnover of soil carbon with the increasing of MAT or MAP under ongoing climate change. SEM showed that soil properties, such as soil bulk density, cation exchange capacity and soil silt, were the most important variables driving subsoil τ, challenging our current understanding of climatic drivers (MAT and MAP) controlling on topsoil τ, further providing new evidence that different mechanisms control topsoil and subsoil τ. These conclusions demonstrated that different environmental controls should be considered for reliable prediction of soil carbon dynamics in the top and subsoils in biogeochemical models or earth system models at regional or global scales.</p>


2021 ◽  
Author(s):  
Katrin Karner ◽  
Hermine Mitter ◽  
Erwin Schmid

<p>In the semi-arid Seewinkel region in Austria, competing demands exist for land and water such as from agriculture, nature protection, tourism and settlements. In addition, water quality problems are prevalent due to nitrate leaching in groundwater in the region. Climate change likely will amplify existing resource demands and environmental impacts, imposing considerable challenges for adapting and regulating agriculture in the Seewinkel. Hence, compromises between competing policy objectives are needed. <br>The aim of this presentation is to assess efficient land and water management strategies considering several economic and agro-ecological policy objectives in the Seewinkel region in context of climate scenarios. A multi-objective optimization experiment was performed with an integrated modelling framework to compute agro-economic-ecological Pareto frontiers. The frontiers combine levels of (i) net benefits from agricultural production, (ii) groundwater extraction for agricultural irrigation, (iii) nitrate leaching from agricultural production, and (iv) topsoil organic carbon stocks. 30 stochastic realizations of three climate scenarios are considered for a future period of 31 years: WET, SIMILAR and DRY, which mainly differ regarding annual precipitation volumes. <br>Model results show that a 1% (20%) reduction of agricultural net benefits can lower groundwater extraction by 11-83% (61-100%) and nitrate leaching by 18-19% (49-53%) as well as increase topsoil organic carbon sequestration by 1% (5%) depending on the climate scenario. However, substantial changes in land use and management would be required. For instance, less groundwater extraction by 11-83% requires a 6-21% reduction of irrigated cropland, a 21-33% reduction of highly fertilized cropland, a 10-24% increase of grassland, and a 23-52% increase of abandoned land depending on the climate scenario. Less nitrate leaching by 18-19% (or higher topsoil organic carbon stocks by 1%) require that highly fertilized cropland decreases by 9-13% (4-7%), abandoned land increases by 5-9% (19-49%) and grassland either declines by 3% (14%) or increases by up to 5% (32%) depending on the climate scenario. In general, the share of grassland increases in the wetter climate scenario.<br>Overall, the analysis reveals that especially groundwater extraction and nitrate leaching can be reduced substantially for fairly small reduction in agricultural net benefits in all climate scenarios. 50% of maximum modelled improvements of agro-ecological objectives can be already achieved at 1-15% reductions of agricultural net benefit depending on climate scenarios. Thus, respective land use policies would allow considerable improvements of the agro-ecological performance at relatively low costs. However, improving the agro-ecological performance beyond a particular level can quickly lead to high reductions of agricultural net benefits, as depicted by the non-linear form of the Pareto frontiers. This is mainly related to large declines of cropland and increases in grassland or abandoned land. Furthermore, the results indicate that water management policies are less costly than climate change mitigation policies, at least in the Seewinkel region.</p>


2017 ◽  
Vol 72 (3) ◽  
pp. 191-204 ◽  
Author(s):  
E.D.v.L. Maas ◽  
R. Lal ◽  
K. Coleman ◽  
A. Montenegro ◽  
W.A. Dick

2019 ◽  
Vol 31 (5) ◽  
pp. 1468-1478
Author(s):  
ZHANG Yao ◽  
◽  
WU Duo ◽  
ZHANG Huan ◽  
ZHOU Aifeng ◽  
...  

Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


Sign in / Sign up

Export Citation Format

Share Document