scholarly journals Changes in deep groundwater flow patterns related to oil and gas

2021 ◽  
Author(s):  
Keegan Jellicoe ◽  
Jennifer McIntosh ◽  
Grant Ferguson

Large volumes of saline formation water are both produced from and injected into sedimentary basins as a by-product of oil and gas production. Despite this, the location of production and injection wells has not been studied in detail at the regional scale and the effects on deep groundwater flow patterns (i.e. below the base of groundwater protection) possibly driving fluid flow towards shallow aquifers remain uncertain. Even where injection and production volumes are equal at the basin scale, local changes in hydraulic head can occur due to the distribution of production and injection wells. In the Canadian portion of the Williston Basin, over 4.6 x 109 m3 of water has been co-produced with 5.4 x 108 m3 of oil, and over 5.5 x 109 m3 of water has been injected into the subsurface for saltwater disposal or enhanced oil recovery (EOR). Despite approximately equal values of produced and injected fluids at the sedimentary basin scale over the history of development, cumulative fluid deficits and surpluses per unit area in excess of a few 100 mm are present at scales of a few 100 km2. Fluid fluxes associated with oil and gas activities since 1950 likely exceed background groundwater fluxes in these areas. Modelled pressures capable of creating upward hydraulic gradients are predicted for the Midale Member and Mannville Group, two of the strata with the highest amounts of injection in the study area. This could lead to upward leakage of fluids if permeable pathways, such as leaky wells, are present.

Ground Water ◽  
2021 ◽  
Author(s):  
Keegan Jellicoe ◽  
Jennifer C. McIntosh ◽  
Grant Ferguson

2021 ◽  
Author(s):  
L. Hendraningrat

In low oil price environments, conducting affordable enhanced oil recovery (EOR) projects can be very challenging. One item of interest for successful future EOR should be in how produced fluids are treated and how to achieve cost-efficiency. Nanoflooding, is an emerging EOR technique, which has attracted deployment in recent years. Meanwhile, Indonesia continues to progress towards the national oil and gas production target of one million barrels per day by 2030. This paper presents the observation of opportunities and challenges of using nanoflooding to enable oil and gas production in Indonesia to achieve its desired targets. The study began by mapping the pain points in major oilfields in Indonesia. We observed and discussed the advantage and limitation of traditional mature EOR techniques, status, and ongoing application of EOR in Indonesia. Then, we briefly explained the main reasons why nanoflooding can be considered for future implementation in accelerating oil production in Indonesia, including a discussion about a successful pilot test. As an emerging EOR technique, nanoflooding can be considered as a cost-efficient technique. Silica-based nanofluid can be accessed in a cost-efficient manner and can be executed from an implementation standpoint considering surface facilities. The mechanism that is introduced can help to displace incremental oil more effectively since it can go inside pore throats due to the nano-size. We observed several recognized benefits and challenges to deploy nanoflooding in Indonesia. Based on this study, nanoflooding is very attractive and has potential to be implemented.


Author(s):  
B.M. Das ◽  
D. Dutta

Nanotechnology encompasses the science and technology of objects with sizes ranging from 1 nm to 100 nm. Today, exploration and production from conventional oil and gas wells have reached a stage of depletion. Newer technologies have been developed to address this problem. Maximum oil production at a minimum cost is currently a huge challenge. This paper reviews nanotechnology applications in the oil and gas production sector, including in the fields of exploration, drilling, production, and waste management in oil fields, as well as their environmental concerns. The paper reviews experimental observations carried out by various researchers in these fields. The effect of various nanoparticles, such as titanium oxide, magnesium oxide, zinc oxide, copper oxide, and carbon nanotubes in drilling fluids and silica nanoparticles in enhanced oil recovery, has been observed and studied. This paper gives a detailed review of the benefits of nanotechnology in oil exploration and production. The fusion of nanotechnology and petroleum technology can result in great benefits. The physics and chemistry of nanoparticles and nanostructures are very new to petroleum technology. Due to the greater risk associated with adapting new technology, nanotechnology has been slow to gain widespread acceptance in the oil and gas industries. However, the current economic conditions have become a driving force for newer technologies.


2019 ◽  
Vol 28 (1) ◽  
pp. 175-192
Author(s):  
Phil Hayes ◽  
Chris Nicol ◽  
Andrew D. La Croix ◽  
Julie Pearce ◽  
Sebastian Gonzalez ◽  
...  

AbstractThe Precipice Sandstone is a major Great Artesian Basin aquifer in the Surat Basin, Queensland, Australia, which is used for water supply and production of oil and gas. This report describes use of observed groundwater pressure responses to managed aquifer recharge (MAR) at a regional scale to test recent geological descriptions of Precipice Sandstone extent, and to inform its hydrogeological conceptualisation. Since 2015, two MAR schemes have injected over 20 GL of treated water from coal seam gas production into the Precipice Sandstone, with pressure responses rapidly propagating over 100 km, indicating high aquifer diffusivity. Groundwater modelling of injection and inversion of pressure signals using PEST software shows the spatial variability of aquifer properties, and indicates that basin in-situ stresses and faulting exert control on permeability. Extremely high permeability, up to 200 m/day, occurs in heavily fractured regions with a dual-porosity flow regime. The broader-scale estimates of permeability approach an order of magnitude higher than previous studies, which has implications for the management of water resources in the Precipice Sandstone. Results also show the Precipice Sandstone to have broadly isotropic permeability. The results also support a recent geological interpretation of the Precipice Sandstone as having more limited lateral extent than initially considered. The study shows the effective use of MAR injection data to improve geological and hydrogeological understanding through groundwater model inversion. It also demonstrates the utility of combining hydrogeological and reservoir-engineer datasets in areas explored and developed for both groundwater resources and oil and gas resources.


Author(s):  
Javier E. Sanmiguel ◽  
S. A. (Raj) Mehta ◽  
R. Gordon Moore

Abstract Gas-phase combustion in porous media has many potential applications in the oil and gas industry. Some of these applications are associated with: air injection based improved oil recovery (IOR) processes, formation heat treatment for remediation of near well-bore formation damage, downhole steam generation for heavy oil recovery, in situ preheating of bitumen for improved pumping, increased temperatures in gas condensate reservoirs, and improved gas production from hydrate reservoirs. The available literature on gas-phase flame propagation in porous media is limited to applications at atmospheric pressure and ambient temperature, where the main application is in designing burners for combustion of gaseous fuels having low calorific value. The effect of pressure on gas-phase combustion in porous media is not well understood. Accordingly, this paper will describe an experimental study aimed at establishing fundamental information on the various processes and relevant controlling mechanisms associated with gas-phase combustion in porous media, especially at elevated pressures. A novel apparatus has been designed, constructed and commissioned in order to evaluate the effects of controlling parameters such as operating pressure, gas flow rate, type and size of porous media, and equivalence ratio on combustion characteristics. The results of this study, concerned with lean mixtures of natural gas and air and operational pressures from atmospheric (88.5 kPa or 12.8 psia) to 433.0 kPa (62.8 psia), will be presented. It will be shown that the velocity of the combustion front decreases as the operating pressure of the system increases, and during some test operating conditions, the apparent burning velocities are over 40 times higher than the open flame laminar burning velocities.


2018 ◽  
Vol 18 (9) ◽  
pp. 6483-6491 ◽  
Author(s):  
Jian-Xiong Sheng ◽  
Daniel J. Jacob ◽  
Alexander J. Turner ◽  
Joannes D. Maasakkers ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. We use observations of boundary layer methane from the SEAC4RS aircraft campaign over the Southeast US in August–September 2013 to estimate methane emissions in that region through an inverse analysis with up to 0.25∘×0.3125∘ (25×25 km2) resolution and with full error characterization. The Southeast US is a major source region for methane including large contributions from oil and gas production and wetlands. Our inversion uses state-of-the-art emission inventories as prior estimates, including a gridded version of the anthropogenic EPA Greenhouse Gas Inventory and the mean of the WetCHARTs ensemble for wetlands. Inversion results are independently verified by comparison with surface (NOAA∕ESRL) and column (TCCON) methane observations. Our posterior estimates for the Southeast US are 12.8±0.9 Tg a−1 for anthropogenic sources (no significant change from the gridded EPA inventory) and 9.4±0.8 Tg a−1 for wetlands (27 % decrease from the mean in the WetCHARTs ensemble). The largest source of error in the WetCHARTs wetlands ensemble is the land cover map specification of wetland areal extent. Our results support the accuracy of the EPA anthropogenic inventory on a regional scale but there are significant local discrepancies for oil and gas production fields, suggesting that emission factors are more variable than assumed in the EPA inventory.


Author(s):  
Pertiwi Andarani ◽  
Arya Rezagama

The exploration and production process of oil and its supporting operations always generates wasteas by-product. If they are uncontrolled, it might decrease the environmental quality. Thus, it isnecessary to manage and treat the waste in order to meet the regulation standard of quality andquantity. PT XYZ is an energy company, particularly oil and gas production, which its productionactivity generate a large amount of waste as well as produced water. Thus, PT XYZ must havefacilities or produced water handling plant which could minimize pollution caused by produced water.PT XYZ already has a system of produced water handling with recycling principle. After oil and waterseparation including water treating at Water Treating Plant (WTP), produced water will be used forsteam injection. This is the part of enhanced oil recovery by steam flooding in Duri Field. Besides,produced water could be used as backwash water at WTP, that is Oil Removal Filter (ORF) and WaterSoftener, which is called brine water. If the produced water and brine water is over load the capacity ofoil enhanced recovery injection, it might be disposed through injection to Disposal Well and there arecertain condition that produced water should be discharged into canal. The objective f this study is toanalyze the performance of a water treating plant in PT XYZ. Water Treating Plant is a facility fortreating produced water. Basically, WTP is on good condition and each unit has high efficiency forseparating oil and water (60-99%). Horizontal velocity at pit #A of API Separator was larger than thedesign criteria. In addition, Water Softeners have efficiency until 99% for the hardness.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qingkai Zhao ◽  
Hang Xu ◽  
Longbin Tao

The time-dependent mixed bioconvection flow of an electrically conducting fluid between two infinite parallel plates in the presence of a magnetic field and a first-order chemical reaction is investigated. The fully coupled nonlinear systems describing the total mass, momentum, thermal energy, mass diffusion, and microorganisms equations are reduced to a set of ordinary differential equations via a set of new similarity transformations. The detailed analysis illustrating the influences of various physical parameters such as the magnetic, squeezing, and chemical reaction parameters and the Schmidt and Prandtl numbers on the distributions of temperature and microorganisms as well as the skin friction and the Nusselt number is presented. The conclusion is drawn that the flow field, temperature, and chemical reaction profiles are significantly influenced by magnetic parameter, heat generation/absorption parameter, and chemical parameter. Some examples of potential applications of such bioconvection could be found in pharmaceutical industry, microfluidic devices, microbial enhanced oil recovery, modeling oil, and gas-bearing sedimentary basins.


2003 ◽  
Vol 20 (1) ◽  
pp. 17-59 ◽  
Author(s):  
John R. Underhill

AbstractOnshore exploration success during the first half of the 20th century led to petroleum production from many, relatively small oil and gas accumulations in areas like the East Midlands, North Yorkshire and Midland Valley of Scotland. Despite this, the notion that exploration of the United Kingdom's continental shelf (UKCS) might lead to the country having self-sufficiency in oil and gas production would have been viewed as extremely fanciful as recently as the late 1950s. Yet as we pass into the new century, only thirty-five years on from the drilling of the first offshore well, that is exactly the position Britain finds itself in. By 2001, around three million barrels of oil equivalent were being produced each day from 239 fields. The producing fields have a wide geographical distribution, occur in a number of discrete sedimentary basins and contain a wide spectrum of reservoirs that were originally deposited in diverse sedimentary and stratigraphic units ranging from Devonian to Eocene in age. Although carbonates are represented, the main producing horizons have primarily proved to be siliciclastic in nature and were deposited in environments ranging from aeolian and fluviatile continental red beds, coastal plain, nearshore beach and shelfal settings all the way through to deep-marine, submarine fan sediments. This chapter attempts to place each of the main producing fields into their proper stratigraphic, tectonic and sedimentological context in order to demonstrate how a wide variety of factors have successfully combined to produce each of the prospective petroleum play fairways and hence, make the UKCS such a prolific and important petroleum province.


Sign in / Sign up

Export Citation Format

Share Document