Improving the validation of turbulent jet breakup models
Understanding the physics of the breakup of turbulent liquid jets is important for a variety of applications including engine sprays, fire suppression systems, and water jet cutting. Models of turbulent jet breakup allow predictions of quantities of interest like the droplet size distribution and breakup length of the jet. These models are compared against experimental data in a process called validation. If the model predictions are within the experimental uncertainty, then the model is "validated" and believed to be accurate, and possibly can explain the physics. Uncertainty quantification is necessary for model validation. While unfortunately relatively few experimental studies quantify uncertainty, that is not the most pressing validation issue in turbulent jet breakup. I detail 3 additional problems that can make the apparent validation of a model actually an illusion, regardless of how well the model appears to match the data. These problems include: 1. important variables being omitted or guessed in experiments and models, 2. confounding between independent variables, that is, two variables changing simultaneously, making determining cause and effect impossible, and 3. testing only combinations of submodels and not each submodel in isolation. To avoid these problems and others, I developed validation guidelines that are detailed in this work. Following these guidelines, I compiled a large experimental database. Only 28 out of 47 experimental studies considered met my data quality guidelines. Only 18 studies had quantified uncertainty, and only 3 studies had substantial variation in the turbulence intensity.