Formation and Breakup of Liquid Jets Curved by Gravity

Author(s):  
Manash Pratim Borthakur ◽  
Binita Nath ◽  
Gautam Biswas ◽  
Dipankar Bandyopadhyay

The formation and breakup of a liquid jet in air with gravity acting perpendicular to the direction of the jet is studied computationally. The liquid jet follows a parabolic path due to the influence of gravity which curves the jet trajectory. Both symmetric and asymmetric perturbations develop on the liquid surface which lead to jet breakup with varying droplet size distribution. The limiting length of the jet at breakup increases with increase in the Weber number and Ohnesorge number. At higher value of Weber number, the liquid jet traverses a longer horizontal distance when released from the same vertical height. Increasing the Bond number leads to a significant increase in the curvature of the jet trajectory. The volume of drops produced varies temporally for a given Weber number and decreases with the increasing value of Weber number. The detached drops undergo rolling motion as well as shape oscillations as they continue to fall on their trajectories.

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 676
Author(s):  
Lingzhen Kong ◽  
Tian Lan ◽  
Jiaqing Chen ◽  
Kuisheng Wang ◽  
Huan Sun

The breakup processes and droplet characteristics of a liquid jet injected into a low-speed air crossflow in the finite space were experimentally investigated. The liquid jet breakup processes were recorded by high-speed photography, and phase-Doppler anemometry (PDA) was employed to measure the droplet sizes and droplet velocities. Through the instantaneous image observation, the liquid jet breakup mode could be divided into bump breakup, arcade breakup and bag breakup modes, and the experimental regime map of primary breakup processes was summarized. The transition boundaries between different breakup modes were found. The gas Weber number (Weg) could be considered as the most sensitive dimensionless parameter for the breakup mode. There was a Weg transition point, and droplet size distribution was able to change from the oblique-I-type to the C-type with an increase in Weg. The liquid jet Weber number (Wej) had little effect on droplet size distribution, and droplet size was in the range of 50–150 μm. If Weg > 7.55, the atomization efficiency would be very considerable. Droplet velocity increased significantly with an increase in Weg of the air crossflow, but the change in droplet velocity was not obvious with the increase in Wej. Weg had a decisive effect on the droplet velocity distribution in the outlet section of test tube.


2019 ◽  
Vol 879 ◽  
pp. 775-792 ◽  
Author(s):  
M. Broumand ◽  
M. Birouk ◽  
S. Vahid Mahmoodi J.

The influence of turbulence characteristics of a cross-airflow including its velocity fluctuations and integral length and time scales on the primary breakup regime, trajectory and breakup height and time of a transversely injected liquid jet was investigated experimentally. Turbulence intensity of the incoming airflow was varied from $u_{rms}/u_{g}=1.5\,\%$ to 5.5 % (where $u_{g}$ is cross-airflow streamwise mean velocity and $u_{rms}$ is the r.m.s. of the corresponding cross-airflow streamwise mean velocity fluctuation) by placing at the inlet of the test section a perforated plate/grid with a solidity ratio of $S=50\,\%$. Over the range of gas Weber number, $3.1<We_{g}<7.14$, the ensuing liquid jet exhibited more fluctuations and late breakup transitional behaviour under turbulent airflow conditions than in a uniform cross-airflow. Proper orthogonal decomposition of the liquid jet dynamics revealed that the use of grid caused a rise in the wavelength of travelling waves along the liquid jet, which hindered the transition of the liquid jet primary breakup regime from enhanced capillary breakup to the bag breakup mode. The quantitative results demonstrated that, at a constant airflow mean velocity, turbulent cross-airflow caused the liquid jet to bend earlier compared with its uniform counterpart. A power-law empirical correlation was proposed for the prediction of the liquid jet trajectory which takes into account the effect of turbulent Reynolds number. The liquid jet breakup height (in the $y$-axis direction) normalized by the jet diameter, and accordingly the liquid jet breakup time normalized by the airflow integral time scale, were found to decrease with increasing the airflow turbulence intensity. Two power-law empirical correlations were proposed to predict the liquid jet breakup height and time.


Author(s):  
C.-L. Ng ◽  
K. A. Sallam

The deformation of laminar liquid jets in gaseous crossflow before the onset of primary breakup is studied motivated by its application to fuel injection in jet afterburners and agricultural sprays, among others. Three crossflow Weber numbers that represent three different liquid jet breakup regimes; column, bag, and shear breakup regimes, were studied at large liquid/gas density ratios and small Ohnesorge numbers. In each case the liquid jet was simulated from the jet exit and ended before the location where the experimental data indicated the onset of breakup. The results show that in column and bag breakup, the reduced pressures along the sides of the jet cause the liquid to move to the sides of the jet and enhance the jet deformation. In shear breakup, the flattened upwind surface pushes the liquid towards the two sides of the jet and causing the gaseous crossflow to separate near the edges of the liquid jet thus preventing further deformation before the onset of breakup. It was also found out that in shear breakup regime, the liquid phase velocity inside the liquid jet was large enough to cause onset of ligament formation along the jet side, which was not the case in the column and bag breakup regimes. In bag breakup, downwind surface waves were observed to grow along the sides of the liquid jet triggered a complimentary experimental study that confirmed the existence of those waves for the first time.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1854 ◽  
Author(s):  
Jin-Peng Guo ◽  
Yi-Bo Wang ◽  
Fu-Qiang Bai ◽  
Fan Zhang ◽  
Qing Du

As a kind of non-Newtonian fluid with special rheological features, the study of the breakup of power-law liquid jets has drawn more interest due to its extensive engineering applications. This paper investigated the effect of gas media confinement and asymmetry on the instability of power-law plane jets by linear instability analysis. The gas asymmetric conditions mainly result from unequal gas media thickness and aerodynamic forces on both sides of a liquid jet. The results show a limited gas space will strengthen the interaction between gas and liquid and destabilize the power-law liquid jet. Power-law fluid is easier to disintegrate into droplets in asymmetric gas medium than that in the symmetric case. The aerodynamic asymmetry destabilizes para-sinuous mode, whereas stabilizes para-varicose mode. For a large Weber number, the aerodynamic asymmetry plays a more significant role on jet instability compared with boundary asymmetry. The para-sinuous mode is always responsible for the jet breakup in the asymmetric gas media. With a larger gas density or higher liquid velocity, the aerodynamic asymmetry could dramatically promote liquid disintegration. Finally, the influence of two asymmetry distributions on the unstable range was analyzed and the critical curves were obtained to distinguish unstable regimes and stable regimes.


2019 ◽  
Author(s):  
Ben Trettel

Understanding the physics of the breakup of turbulent liquid jets is important for a variety of applications including engine sprays, fire suppression systems, and water jet cutting. Models of turbulent jet breakup allow predictions of quantities of interest like the droplet size distribution and breakup length of the jet. These models are compared against experimental data in a process called validation. If the model predictions are within the experimental uncertainty, then the model is "validated" and believed to be accurate, and possibly can explain the physics. Uncertainty quantification is necessary for model validation. While unfortunately relatively few experimental studies quantify uncertainty, that is not the most pressing validation issue in turbulent jet breakup. I detail 3 additional problems that can make the apparent validation of a model actually an illusion, regardless of how well the model appears to match the data. These problems include: 1. important variables being omitted or guessed in experiments and models, 2. confounding between independent variables, that is, two variables changing simultaneously, making determining cause and effect impossible, and 3. testing only combinations of submodels and not each submodel in isolation. To avoid these problems and others, I developed validation guidelines that are detailed in this work. Following these guidelines, I compiled a large experimental database. Only 28 out of 47 experimental studies considered met my data quality guidelines. Only 18 studies had quantified uncertainty, and only 3 studies had substantial variation in the turbulence intensity.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yakang Xia ◽  
Lyes Khezzar ◽  
Shrinivas Bojanampati ◽  
Arman Molki

Flow visualization experiments are carried out to study the flow regimes and breakup length of the water sheet generated by two impinging liquid jets from an atomizer made of two identical tubes 0.686 mm in diameter. These experiments cover liquid jet Reynolds numbers based on the pipe diameter in the range of 1541 to 5394. The effects of the jet velocities and impingement angle between the two jets on the breakup performance are studied. Four spray patterns are recognized, which are presheet formation, smooth sheet, ruffled sheet, and open-rim sheet regimes. Water sheet breakup length is found to be consistent with previous experimental and theoretical results in the lower Weber number (based on water jet diameter and velocity) range. In the relatively high Weber number range, the breakup length tends to a constant value with increasing Weber number, and some discrepancies between experimental and theoretical predictions do exist. Measured water sheet area increases with increasing liquid jet Reynolds numbers and impingement angle within the range of the current study.


Author(s):  
Yosef Rezaei ◽  
Mehran Tadjfar

An experimental investigation was performed to study the physics of liquid jets injected into a low subsonic crossflow. The jets are issued from elliptical and circular injectors with equivalent exit area. The liquid jet was visualized using shadowgraph technique and a high speed camera was used to record the instantaneous status of the jet. The liquid / air momentum flux ratio and air Weber number were varied to examine their effects on different parameters of the flow like liquid jet column trajectory, breakup point and breakup regimes. The major axis of the elliptical nozzle was aligned parallel and perpendicular to the air crossflow direction. Two different breakup modes were observed, column breakup and bag breakup. Based on the obtained results some characteristics of injected liquid jets into the air crossflow such as penetration depth and the trajectory of liquid jet were affected by changing the nozzle exit shape.


Author(s):  
Shao-lin Wang ◽  
Yong Huang ◽  
Fang Wang ◽  
Zhi-lin Liu ◽  
Lei Liu

Liquid jets in cross air flows are widely used and play an important role in propulsion systems, such as ramjet combustors. In this paper, experiments were carried out to investigate the properties of the primary breakup of liquid jets in subsonic transverse airflows at low Weber number. The test ranges included crossflow Weber numbers of 0.5–6.7, liquid-to-gas momentum ratios of 3–120, and Ohnesorge number of 0.0086. Four different injectors with diameter 0.4mm, 0.5mm, 0.6mm and 1mm have been used. A high speed camera was used to observe the jet column breakup process. Results show that the surface wavelength decreases not only with the increase of the gas Weber number but also with the increase of the momentum ratio. The breakup length decreases with the increase of the gas Weber number, in addition to its increase with the increase of the momentum ratio. The droplet diameter decreases with the increase of both the gas Weber number and momentum ratio, although the gas Weber number will dominate the breakup process. The surface wavelength, breakup length, and droplet diameter were also analyzed with to obtain semi-theoretical correlations.


Author(s):  
C.-L. Ng ◽  
K. A. Sallam ◽  
H. M. Metwally ◽  
C. Aalburg

A computational study of the deformation and surface wave properties of nonturbulent round liquid jets in gaseous crossflow is described. The objective of the study was to consider effects of liquid viscosity, liquid/gas density ratio, and crossflow Weber number that are representative of practical sprays. Three-dimensional computations of the deformation of round liquid jets in gaseous crossflow were carried out using FLUENT software utilizing its Volume of Fluid (VOF) module. The computations were evaluated satisfactorily based on earlier measurements of the properties of nonturbulent round liquid jets in crossflow (liquid jet deformation and surface waves) and revealed three-dimensional properties of the surface waves that could not be observed by previous measurements that were taken from the side of the jet.


An experimental investigation of the breakup of a liquid jet using high-speed motion pictures has revealed many different breakup mechanisms. The influence of disturbance amplitude and frequency on the breakup mechanism for a Weber number range of 25 to 160 is considered. The jet breakup is grouped into several distinct regions, depending on the disturbance wavelength ( λ ), and the undisturbed jet diameter ( D ). These include the random breakup region for λ/D < 3, short wavelength Rayleigh breakup region for 3 < λ/D < 5.5, medium wavelength Rayleigh breakup region for 5.5 < λ/D < 11, and long wavelength Rayleigh breakup region for λ/D > 11. Except for the random region ( λ/D < 3), all the other regions show repeatable patterns of breakup. The boundaries between some of the distinct patterns are obtained for various Weber numbers and disturbance amplitudes. A new type of satellite merge is also discovered which is referred to as the reflexive merging satellite. Other features of the jet breakup, such as satellite/drop size ratio and breakup times, are also considered in detail.


Sign in / Sign up

Export Citation Format

Share Document