scholarly journals Ti6Al4V Hybrid Structure Mechanical Properties – Wrought and Additive Manufactured Powder-Bed Material

2020 ◽  
Author(s):  
Ohad Dolev ◽  
shmuel osovski ◽  
Amnon Shirizly

The implementation of additive manufacturing techniques in the production of mission critical structural components is challenged by its low throughput and limited build envelope. In recent years, hybrid production methods are emerging to bridge between the build volume and high throughput of conventional production methods and the design freedom enabled by additive manufacturing. The repeatability of material properties and the quality of the interface between the additive manufactured and wrought material are crucial for the adoption of hybrid manufacturing techniques by the industry. Here, the tensile behavior and fracture toughness of a hybrid Ti6Al4V alloy are examined in detail. Ti6Al4V pre-forms were built onto a wrought Ti6Al4V start-plate and extracted via milling. Compact tension and uniaxial tension specimens, extracted from the hybrid pre-forms demonstrated good fracture and properties with no preference for crack growth in neither the AM or wrought materials. Microstructural characterization revealed a sharp interface between the two materials with no evidence of a heat-affected zone. The hybrid manufacturing approach studied here expands the current limitations of large scale critical components with fine features and allow such structures to be produced with a higher thruput.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Yang Xie ◽  
Haiou Zhang ◽  
Fei Zhou

Additive manufacturing (AM), or 3D printing, is drawing considerable contemporary interest due to its characteristics of high material utilization, great flexibility in product design, and inherent moldless process. Arc-based AM (AAM) is a promising AM method with high deposition rate and favorable buildup quality. Components made by AAM are fabricated through superimposed weld beads deposited from metal wire. Unlike laser-based additive manufacturing, AAM is more difficult to control. Because of the large energy input of the energy source and the liquidity of the melting metal material, bottleneck problems like shrinkage porosity, cracking, residual stresses, and deformation occur. Resultant poor geometrical accuracy and mechanical property keep AAM from industrial application. Especially in the aerospace industry, structural and mechanical property specifications are stringent and critical. This paper presents a novel hybrid manufacturing method by using hot-rolling process to assist the arc welding to solve the above problems. Initially, a miniature metamorphic rolling mechanism (MRM) was developed using metamorphic mechanism theory. Configuration and topology of the MRM can change according to the feature of the components to roll the top and lateral surfaces of the bead. Subsequently, three single-pass multilayer walls were built, respectively, for comparison. The rolled results show significant improvement in geometrical accuracy of the built features. Tensile test results demonstrate improvement in mechanical properties. The improved mechanical properties of rolled specimens are superior to wrought material in travel direction. Microstructure comparisons indicate columnar grains observed in vertical direction and fusion zones were suppressed. Eventually, fabrication of a large-scale aerospace component validates the feasibility of industry application for the hybrid manufacturing technology.


2020 ◽  
Author(s):  
Sandip Dutta ◽  
Sagar Dasgupta ◽  
Geetha Chimata

Additive manufacturing is the buzz word these days and many companies are leaning on this technology to leap forward in un-chartered design space that promises to give better performance at impossible to reach design goals with the current manufacturing methods. This paper addresses recent developments that have occurred in Energy related businesses with the adoption of 3D printing, also known as Additive Manufacturing (AM). It covers what and why of additive manufacturing; what constitutes energy and AM industry; current activities in AM for energy; AM for different energy sectors; AM processes; AM applications; selected patents in additive manufacturing associated with energy applications; and economic and financial aspects of AM in energy related industries. In this review paper it was noted that in-spite of phenomenal growth in AM, it seldom replaces traditional production methods due to associated constraints. Many companies are finding complimentary AM processes along with subtractive manufacturing techniques to meet the market demands. However, AM is particularly advantageous and attractive compared to traditional manufacturing methods for low volume complex geometry parts.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Elizabeth Grace Bishop ◽  
Simon James Leigh

The global COVID-19 pandemic has led to an international shortage of Personal Protective Equipment (PPE), with traditional supply chains unable to cope with the significant demand leading to critical shortfalls. A number of open and crowd sourced initiatives have sought to address this shortfall by producing equipment such as protective face shields using additive manufacturing techniques such as Fused Filament Fabrication (FFF). This paper reports the process of designing and manufacturing protective face shields using Large-scale Additive Manufacturing (LSAM) to produce the major thermoplastic components of the face shield. LSAM offers significant advantages over other Additive Manufacturing (AM) technologies in bridge manufacturing scenarios as a true transition between prototypes and mass production techniques such as injection moulding. In the context of production of COVID-19 face shields, the ability to produce the optimised components in under five minutes compared to what would typically take one to two hours using another AM technologies meant that significant production volume could be achieved rapidly with minimal staffing.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 144
Author(s):  
Yubo Tao ◽  
Qing Yin ◽  
Peng Li

Wood-based materials in current additive manufacturing (AM) feedstocks are primarily restricted to the micron scale. Utilizing large-scale wood in existing AM techniques remains a challenge. This paper proposes an AM method—laser-cut veneer lamination (LcVL)—for wood-based product fabrication. Inspired by laminated object manufacturing (LOM) and plywood technology, LcVL bonds wood veneers in a layer-upon-layer manner. As demonstrated by printed samples, LcVL was able to retain the advantageous qualities of AM, specifically, the ability to manufacture products with complex geometries which would otherwise be impossible using subtractive manufacturing techniques. Furthermore, LcVL-product structures designed through adjusting internal voids and wood-texture directionality could serve as material templates or matrices for functional wood-based materials. Numerical analyses established relations between the processing resolution of LcVL and proportional veneer thickness (layer height). LcVL could serve as a basis for the further development of large-scale wood usage in AM.


Mechanik ◽  
2018 ◽  
Vol 91 (8-9) ◽  
pp. 769-771 ◽  
Author(s):  
Marcin A. Królikowski ◽  
Marta B. Krawczyk

This paper describes the role of metal cutting process as integral part of manufacturing with application of MAM (metal additive manufacturing) techniques. Additive manufacturing is written explicit as main feature included in Industry 4.0 cycle. AM techniques lead to hybrid manufacturing techniques as well. This paper points that AM almost always is accompanied by supplementary conventional machining.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 689
Author(s):  
Trunal Bhujangrao ◽  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Edurne Iriondo ◽  
Franck Girot Mata

Wire Arc Additive Manufacturing (WAAM) is one of the most appropriate additive manufacturing techniques for producing large-scale metal components with a high deposition rate and low cost. Recently, the manufacture of nickel-based alloy (IN718) using WAAM technology has received increased attention due to its wide application in industry. However, insufficient information is available on the mechanical properties of WAAM IN718 alloy, for example in high-temperature testing. In this paper, the mechanical properties of IN718 specimens manufactured by the WAAM technique have been investigated by tensile tests and hardness measurements. The specific comparison is also made with the wrought IN718 alloy, while the microstructure was assessed by scanning electron microscopy and X-ray diffraction analysis. Fractographic studies were carried out on the specimens to understand the fracture behavior. It was shown that the yield strength and hardness of WAAM IN718 alloy is higher than that of the wrought alloy IN718, while the ultimate tensile strength of the WAAM alloys is difficult to assess at lower temperatures. The microstructure analysis shows the presence of precipitates (laves phase) in WAAM IN718 alloy. Finally, the effect of precipitation on the mechanical properties of the WAAM IN718 alloy was discussed in detail.


2018 ◽  
Author(s):  
Benjamin Jenett ◽  
Neil Gershenfeld ◽  
Paul Guerrier

We describe a method for the manufacturing of metallic lattices with tunable properties through the reversible assembly of building block elements, which we call discrete metal lattice assembly (DMLA). These structures can have sub-millimeter scale features on millimeter scale parts used to assemble structures spanning tens of centimeters, comparable to those currently made with Direct Metal Laser Sintering (DMLS). However, unlike traditional additive manufacturing (AM) methods, the use of discrete assembly affords a number of benefits, such as extensible, incremental construction and being repairable and reconfigurable. We show this method results in large scale (tens of centimeters), ultralight (<10 kg/m3 effective density) lattices which are currently not possible with state of the art additive manufacturing techniques. The lattice geometry used here is a combination of two geometries with quadratic property scaling, resulting in a novel lattice with sub-quadratic scaling.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Sign in / Sign up

Export Citation Format

Share Document