Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

2015 ◽  
Vol 46 (9) ◽  
pp. 3864-3875 ◽  
Author(s):  
Ranadip Acharya ◽  
Suman Das
Author(s):  
Warren Miglietti ◽  
Ian Summerside

The 60 Hz, Frame 7F engine has been in commercial operation for more than two decades now with approximately 800 Frame 7 (F, FA, FA+ and FA+e models) machines existing in North America and a total of over 1100 F-class machines throughout the world. Of importance to operators/users and owners of this gas turbine engine is the ability to not only recondition the turbine “hot-end section” components, in order to support maintenance requirements, but also to reduce the life cycle costs of these components. Stage 1 nozzles are a cast doublet, manufactured from FSX-414 Co-based superalloy. There are 24 nozzles in an engine set. As a result of the extreme turbine inlet temperatures at the 1st stage nozzle, these components experience severe thermal fatigue cracking. On one particular OEM engine set inspected, over 600 cracks were identified on each nozzle after engine operation. As a consequence, the stage 1 nozzles when compared to the other components in the engine exhibits the worst degradation and is therefore a focus point of reconditioning for those in the industry. The technical objective is to describe the development of a repair scheme for the stage 1 nozzle that can successfully address and repair this level of severe cracking and oxidation, with 0% scrap/fallout for a heavy repair, after a normal duty cycle. Special processes have been established for these components repairs, including but not limited to removal of the damaged and oxidized trailing edges by machining, high frequency Gas Tungsten Arc Welding (GTAW) of new trailing edge coupons. This technical paper describes the repair process development and implementation of the different stages of the repair schemes and shows metallurgical and mechanical characteristics of the repaired regions of the component. As a result of successfully executing these special processes, although a heavy repair workscope was implemented; all the nozzles were successfully repaired without any scrap.


2015 ◽  
Vol 17 (7) ◽  
pp. 942-950 ◽  
Author(s):  
Ranadip Acharya ◽  
Rohan Bansal ◽  
Justin J. Gambone ◽  
Max A. Kaplan ◽  
Gerhard E. Fuchs ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 187-192 ◽  
Author(s):  
Amrita Basak ◽  
Suman Das

Advancements in the design, optimization and manufacture of turbine engine hot-section components during the past few decades have contributed enormously to the improvement in power-ratings and efficiency levels of gas turbine engines. Nickel-base superalloys are extensively used to produce the hot-section components as this class of alloys offer improved creep strength and higher fatigue resistance compared to other alloys due to the presence of precipitate-strengthening γ' phases i.e. Ni3[Ti, Al, Ta etc.] in the normally face centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvement in properties, it also results in increased processing difficulty as these alloys are prone to crack formation. In this work, we demonstrate powder-bed additive manufacturing of René 142 onto René 125 substrates through scanning laser epitaxy (SLE). René 142 is a high strength, nickel-base directionally solidified (DS) alloy that has high rupture strength, excellent resistance to grain boundary cracking, and superior high-velocity oxidation resistance. Successful deposition of René 142 on René 125 provides an avenue to repair legacy hot-section components by depositing superior quality alloys at the damage locations. The microstructure of the deposited René 142 is observed to follow the polycrystalline or EQ morphology of the underlying René 125 substrate. The SLE processed René 142 exhibits dense and crack-free deposits, and microstructure refinement compared to the underlying cast René 125 substrate. This work is sponsored by the Office of Naval Research through grants N00014-11-1-0670 and N00014-14-1-0658.


2021 ◽  
Vol 58 (1) ◽  
pp. 4-31
Author(s):  
C. Fleißner-Rieger ◽  
T. Pogrielz ◽  
D. Obersteiner ◽  
T. Pfeifer ◽  
H. Clemens ◽  
...  

Abstract Additive manufacturing processes allow the production of geometrically complex lightweight structures with specific material properties. However, by contrast with ingot metallurgy methods, the manufacture of components using this process also brings about some challenges. In the field of microstructural characterization, where mostly very fine structures are analyzed, it is thus indispensable to optimize the classic sample preparation process and to furthermore implement additional preparation steps. This work focuses on the metallography of additively manufactured Ti‑6Al‑4V components produced in a selective laser melting process. It offers a guideline for the metallographic preparation along the process chain of additive manufacturing from the metal powder characterization to the macro- and microstructural analysis of the laser melted sample. Apart from developing preparation parameters, selected etching methods were examined with regard to their practicality.


Author(s):  
Marton Szigeti ◽  
Agnes Meszaros-Matwiejuk ◽  
Dora Molnar-Gabor ◽  
Andras Guttman

AbstractIndustrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2′-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2′- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control. Graphical abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. H. Carneiro ◽  
S. D. Rawson ◽  
H . Puga ◽  
P. J. Withers

AbstractCellular materials are recognized for their high specific mechanical properties, making them desirable in ultra-lightweight applications. Periodic lattices have tunable properties and may be manufactured by metallic additive manufacturing (AM) techniques. However, AM can lead to issues with un-melted powder, macro/micro porosity, dimensional control and heterogeneous microstructures. This study overcomes these problems through a novel technique, combining additive manufacturing and investment casting to produce detailed investment cast lattice structures. Fused filament fabrication is used to fabricate a pattern used as the mold for the investment casting of aluminium A356 alloy into high-conformity thin-ribbed (~ 0.6 mm thickness) scaffolds. X-ray micro-computed tomography (CT) is used to characterize macro- and meso-scale defects. Optical and scanning electron (SEM) microscopies are used to characterize the microstructure of the cast structures. Slight dimensional (macroscale) variations originate from the 3D printing of the pattern. At the mesoscale, the casting process introduces very fine (~ 3 µm) porosity, along with small numbers of (~ 25 µm) gas entrapment defects in the horizontal struts. At a microstructural level, both the (~ 70 μm) globular/dendritic grains and secondary phases show no significant variations across the lattices. This method is a promising alternative means for producing highly detailed non-stochastic metallic cellular lattices and offers scope for further improvement through refinement of filament fabrication.


Author(s):  
Paul Ryan ◽  
Jan Schwerdtfeger ◽  
Markus Rodermann

Compared to conventional manufacturing processes, additive manufacturing offers a degree of freedom that has the potential to revolutionize the turbine components supply chain. Additive manufacturing facilitates the design and manufacture of highly complex components in high performance materials with features that cannot currently be realized with other processes. In addition, shorter development and manufacturing lead-times are possible due to the flexibility of 3D based processing and the absence of expensive, complicated molds or dies. Having been confined for many years to rapid prototyping or R&D applications, additive manufacturing is now making the move to the factory floor. However, a dearth of manufacturing experience makes the development effort and risk of costly mistakes a deterrent for many organizations that would otherwise be interested in exploring the benefits of additive manufacturing. A former manufacturer of industrial gas turbines recently established an additive manufacturing workshop designed to deliver highly complex engine-ready components that can contribute to increased performance of the gas turbine. A strong emphasis on process validation and implementation of the organization’s best practice Lean and Quality methodologies has laid solid foundations for a highly capable manufacturing environment. This paper describes the approach taken to ensure that the workshop achieves a high level of operational excellence. Process development topics explored in the paper include the following: • Planning of process flow and cell layout to permit the maximum lean performance • Strategy used to determine machine specification and selection method. • Assessment of process capability • Influence of design for manufacture on process efficiency and product quality • Experience gained during actual production of first commercial components


Author(s):  
Philip J. Haley

The ATTAP aims at proving the performance and life of structural ceramic components in the hot gas path of an automotive gas turbine engine. This Department of Energy (DOE)-sponsored, NASA-managed program is being addressed by a General Motors (GM) team drawing expertise from the Advanced Engineering Staff (AES) and from Allison. The program includes design, process development and fabrication, rig and engine testing, and iterative development of selected key ceramic components for the AGT-5 engine. A reference powertrain design (RPD) based on this engine predicts acceleration, driveability, and fuel economy characteristics exceeding those of both current engines and the DOE goals. A low-apsect-ratio ceramic turbine rotor design has been successfully engine-demonstrated at 2200°F and 100% speed, including survival of impact and other hostile flow path conditions. Turbine flow path components have been designed for the 2500°F cycle, using improved monolithic ceramics targeted for Year 2 fabrication. Major development/fabrication efforts have been subcontracted at Carborundum, GTE Labs, Corning Glass, Garrett Ceramic Components, and Manville. Feasibility studies were initiated with Ceramics Process Systems and Drexel University.


2019 ◽  
Vol 39 (2-3) ◽  
pp. 522-530 ◽  
Author(s):  
Eric Schwarzer ◽  
Stefan Holtzhausen ◽  
Uwe Scheithauer ◽  
Claudia Ortmann ◽  
Thomas Oberbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document