scholarly journals An Additive Manufacturing Method Using Large-Scale Wood Inspired by Laminated Object Manufacturing and Plywood Technology

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 144
Author(s):  
Yubo Tao ◽  
Qing Yin ◽  
Peng Li

Wood-based materials in current additive manufacturing (AM) feedstocks are primarily restricted to the micron scale. Utilizing large-scale wood in existing AM techniques remains a challenge. This paper proposes an AM method—laser-cut veneer lamination (LcVL)—for wood-based product fabrication. Inspired by laminated object manufacturing (LOM) and plywood technology, LcVL bonds wood veneers in a layer-upon-layer manner. As demonstrated by printed samples, LcVL was able to retain the advantageous qualities of AM, specifically, the ability to manufacture products with complex geometries which would otherwise be impossible using subtractive manufacturing techniques. Furthermore, LcVL-product structures designed through adjusting internal voids and wood-texture directionality could serve as material templates or matrices for functional wood-based materials. Numerical analyses established relations between the processing resolution of LcVL and proportional veneer thickness (layer height). LcVL could serve as a basis for the further development of large-scale wood usage in AM.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Brian T. Gibson ◽  
Paritosh Mhatre ◽  
Michael C. Borish ◽  
Justin L. West ◽  
Emma D. Betters ◽  
...  

Abstract This article highlights work at Oak Ridge National Laboratory’s Manufacturing Demonstration Facility to develop closed-loop, feedback control for laser-wire based Directed Energy Deposition, a form of metal Big Area Additive Manufacturing (m-BAAM), a process being developed in partnership with GKN Aerospace specifically for the production of Ti-6Al-4V pre-forms for aerospace components. A large-scale structural demonstrator component is presented as a case-study in which not just control, but the entire 3D printing workflow for m-BAAM is discussed in detail, including design principles for large-format metal AM, toolpath generation, parameter development, process control, and system operation, as well as post-print net-shape geometric analysis and finish machining. In terms of control, a multi-sensor approach has been utilized to measure both layer height and melt pool size, and multiple modes of closed-loop control have been developed to manipulate process parameters (laser power, print speed, deposition rate) to control these variables. Layer height control and melt pool size control have yielded excellent local (intralayer) and global (component-level) geometry control, and the impact of melt pool size control in particular on thermal gradients and material properties is the subject of continuing research. Further, these modes of control have allowed the process to advance to higher deposition rates (exceeding 7.5 lb/hr), larger parts (1-meter scale), shorter build times, and higher overall efficiency. The control modes are examined individually, highlighting their development, demonstration, and lessons learned, and it is shown how they operate concurrently to enable the printing of a large-scale, near net shape Ti-6Al-4V component.


Author(s):  
Brooke Mansfield ◽  
Sabrina Torres ◽  
Tianyu Yu ◽  
Dazhong Wu

Abstract Additive manufacturing (AM), also known as 3D printing, has been used for rapid prototyping due to its ability to produce parts with complex geometries from computer-aided design files. Currently, polymers and metals are the most commonly used materials for AM. However, ceramic materials have unique mechanical properties such as strength, corrosion resistance, and temperature resistance. This paper provides a review of recent AM techniques for ceramics such as extrusion-based AM, the mechanical properties of additively manufactured ceramics, and the applications of ceramics in various industries, including aerospace, automotive, energy, electronics, and medical. A detailed overview of binder-jetting, laser-assisted processes, laminated object manufacturing (LOM), and material extrusion-based 3D printing is presented. Finally, the challenges and opportunities in AM of ceramics are identified.


Author(s):  
C. F. Nwaeche ◽  
A. O. Fagunwa ◽  
A. A. Olokoshe ◽  
A. E. Aderowmu ◽  
V. C. T. Uzondu ◽  
...  

All over the world, additive and subtractive manufacturing are the two basic manufacturing methods used for the development of engineering goods and products. In most cases, the method adopted by the manufacturers usually depends on its cost-effectiveness. However, most of the manufacturing industries in Nigeria have little or no information on the relative advantages and disadvantages of the two methods. This had led to many industries adopting one particular method hook, line and sinker without considering the merits that would be offered by the alternative manufacturing method. This paper, therefore, compared the two methods of manufacturing by carrying out reverse engineering of worn-out helical gears (components of a juice extractor) developed using additive and subtractive manufacturing techniques. The parts of the equipment were developed using a lathe, milling and deburring machines to carry out the drilling, turning, grinding, milling and deburring for subtractive manufacturing and 3-D printing machine for additive method. Two gears A and B were developed by both subtractive and additive methods using the dimension of two old gears, which serve as the basis for determining the variation of the nomenclatures of the developed gears from the standard. The time used for product development, cost of production and the energy expended during the production of the two gears using additive and subtractive manufacturing methods were also determined using appropriate methods. The study also showed that it is less expensive to produce both gears A and B using the additive method than the subtractive method. Similarly, in term of energy used, less energy was used during fabrication of the gears using additive method than subtractive method but in general, when you want to print a whole component at once the 3D printer volume could be a major constraint. Hence, the adaptation of additive manufacturing method as a whole or part with the existing subtractive method will help to improve manufacturing industries in Nigeria.


2016 ◽  
Vol 106 (05) ◽  
pp. 354-359
Author(s):  
M. Mottahedi ◽  
P. Zahn ◽  
A. Lechler ◽  
A, Prof. Verl

Topologisch optimierte Bauteile gestatten maximale Steifigkeit bei minimalem Materialeinsatz. Für die Erzeugung solcher Topologien werden meist Algorithmen eingesetzt, die Fertigungseinschränkungen auf Kosten von optimalen Ergebnissen berücksichtigen und keine variablen Materialdichten zulassen. Dieser Fachartikel stellt ein additives Herstellungsverfahren zur Fertigung global optimaler Topologien vor. Als Ergebnis können mittels der ausgewählten Algorithmen Bauteile mit höherer Steifigkeit hergestellt werden.   The optimal topology of components leads to maximum stiffness with minimum material use. To generate these topologies, normally algorithms are employed that tackle manufacturing limitations at the cost of the optimum. This article introduces an additive manufacturing method to enable the production of global topology optimization results. The findings show that by implementing the selected algorithm the stiffness of the components are higher than what could have been produced by conventional techniques.


2019 ◽  
Vol 25 (6) ◽  
pp. 1069-1079 ◽  
Author(s):  
James I. Novak ◽  
Jonathon O’Neill

Purpose This paper aims to present new qualitative and quantitative data about the recently released “BigRep ONE” 3 D printer led by the design of a one-off customized stool. Design/methodology/approach A design for additive manufacturing (DfAM) framework was adopted, with simulation data iteratively informing the final design. Findings Process parameters can vary manufacturing costs of a stool by over AU$1,000 and vary print time by over 100 h. Following simulation, designers can use the knowledge to inform iteration, with a second variation of the design being approximately 50 per cent cheaper and approximately 50 per cent faster to manufacture. Metrology data reveal a tolerance = 0.342 per cent in overall dimensions, and surface roughness data are presented for a 0.5 mm layer height. Research limitations/implications Led by design, this study did not seek to explore the full gamut of settings available in slicing software, focusing predominantly on nozzle diameter, layer height and number of walls alongside the recommended settings from BigRep. The study reveals numerous areas for future research, including more technical studies. Practical implications When knowledge and techniques from desktop 3 D printing are scaled up to dimensions measuring in meters, new opportunities and challenges are presented for design engineers. Print times and material costs in particular are scaled up significantly, and this study provides numerous considerations for research centers, 3 D printing bureaus and manufacturers considering large-scale fused filament fabrication manufacturing. Originality/value This is the first peer-reviewed study involving the BigRep ONE, and new knowledge is presented about the practical application of the printer through a design-led project. Important relationships between material volume/cost and print time are valuable for early adopters.


2020 ◽  
Author(s):  
Ohad Dolev ◽  
shmuel osovski ◽  
Amnon Shirizly

The implementation of additive manufacturing techniques in the production of mission critical structural components is challenged by its low throughput and limited build envelope. In recent years, hybrid production methods are emerging to bridge between the build volume and high throughput of conventional production methods and the design freedom enabled by additive manufacturing. The repeatability of material properties and the quality of the interface between the additive manufactured and wrought material are crucial for the adoption of hybrid manufacturing techniques by the industry. Here, the tensile behavior and fracture toughness of a hybrid Ti6Al4V alloy are examined in detail. Ti6Al4V pre-forms were built onto a wrought Ti6Al4V start-plate and extracted via milling. Compact tension and uniaxial tension specimens, extracted from the hybrid pre-forms demonstrated good fracture and properties with no preference for crack growth in neither the AM or wrought materials. Microstructural characterization revealed a sharp interface between the two materials with no evidence of a heat-affected zone. The hybrid manufacturing approach studied here expands the current limitations of large scale critical components with fine features and allow such structures to be produced with a higher thruput.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1566 ◽  
Author(s):  
Amir Zadpoor

Additive manufacturing (AM) (=3D printing) has emerged during the last few years as a powerful technological platform for fabrication of functional parts with unique complex geometries and superior functionalities that are next to impossible to achieve using conventional manufacturing techniques. Due to their importance in industrial applications and the maturity of the applicable AM techniques, metallic materials are at the forefront of the developments in AM. In this editorial, which has been written as a preamble to the special issue “Perspectives on Additively Manufactured Metallic Materials”, I will highlight some of the frontiers of research on AM of metallic materials to help readers better understand the cutting edge of research in this area. Some of these topics are addressed in the articles appearing in this special issue, while others constitute worthy avenues for future research.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3482 ◽  
Author(s):  
Haorui Zhang ◽  
Junjin Huang ◽  
Changmeng Liu ◽  
Yongsheng Ma ◽  
Yafeng Han ◽  
...  

Lattice structures have drawn considerable attention due to their superior mechanical properties. However, the existing fabrication methods for lattice structures require complex procedures, as they have low material utilization and lead to unreliable node connections, which greatly restricts their application. In this work, wire arc additive manufacturing is used to fabricate large-scale lattice structures efficiently, without any air holes between rods and panels. The principle and the process of fabricating the rods were analyzed systematically. The influence of the two most important parameters, including heat input and preset layer height, is disclosed. Through optical microscopy, the microstructure of the fabricated steel rods is found to consist of dendritic austenite and skeletal ferrite. The tensile strength of the rods can reach 603 MPa, and their elongation reaches 77%. These experimental results demonstrated the feasibility of fabricating lattice structures using wire arc additive manufacturing.


Author(s):  
Seyedeh Elaheh Ghiasian ◽  
Prakhar Jaiswal ◽  
Rahul Rai ◽  
Kemper Lewis

The use of additive manufacturing (AM) for fabricating industrial grade components has increased significantly in recent years. Numerous industrial entities are looking to leverage new AM techniques to enable fabrication of components that were typically manufactured previously using conventional manufacturing techniques such as subtractive manufacturing or casting. Therefore, it is becoming increasingly important to be able to rigorously evaluate the technical and economic feasibility of additively manufacturing a component relative to conventional alternatives. In order to support this evaluation, this paper presents a framework that investigates fabrication feasibility for AM from three perspectives: geometric evaluation, build orientation/support generation, and resources necessary (i.e., cost and time). The core functionality of the framework is enabled on voxelized model representation, discrete and binary formats of 3D continuous objects. AM fabrication feasibility analysis is applied to 34 various parts representing a wide range of manifolds and valves manufactured using conventional manufacturing techniques, components commonly found in the aerospace industry. Results obtained illustrate the capability and generalizability of the framework to analyze intricate geometries and provide a primary assessment for the feasibility of the AM process.


Sign in / Sign up

Export Citation Format

Share Document