scholarly journals Precipitation Estimates from Commercial Microwave Links: Practical Approaches to Wet-antenna Correction

2021 ◽  
Author(s):  
Jaroslav Pastorek ◽  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Vojtěch Bareš

An inadequate correction for wet antenna attenuation (WAA) often causes a notable bias in quantitative precipitation estimates (QPEs) from commercial microwave links (CMLs) limiting the usability of these rainfall data in hydrological applications. This paper analyzes how WAA can be corrected without dedicated rainfall monitoring for a set of 16 CMLs. Using data collected over 53 rainfall events, the performance of six empirical WAA models was studied, both when calibrated to rainfall observations from a permanent municipal rain gauge network and when using model parameters from the literature. The transferability of WAA model parameters among CMLs of various characteristics has also been addressed. The results show that high-quality QPEs with a bias below 5% and RMSE of 1 mm/h in the median could be retrieved, even from sub-kilometer CMLs where WAA is relatively large compared to raindrop attenuation. Models in which WAA is proportional to rainfall intensity provide better WAA estimates than constant and time-dependent models. It is also shown that the parameters of models deriving WAA explicitly from rainfall intensity are independent of CML frequency and path length and, thus, transferable to other locations with CMLs of similar antenna properties.

2018 ◽  
Vol 19 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Fuqiang Tian ◽  
Shiyu Hou ◽  
Long Yang ◽  
Hongchang Hu ◽  
Aizhong Hou

Abstract This study investigates the dependency of the evaluation of the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) rainfall product on the gauge density of a ground-based rain gauge network as well as rainfall intensity over five subregions in mainland China. High-density rain gauges (1.5 gauges per 100 km2) provide exceptional resources for ground validation of satellite rainfall estimates over this region. Eight different gauge networks were derived with contrasting gauge densities ranging from 0.04 to 4 gauges per 100 km2. The evaluation focuses on two warm seasons (April–October) during 2014 and 2015. The results show a strong dependency of the evaluation metrics for the IMERG rainfall product on gauge density and rainfall intensity. A dense rain gauge network tends to provide better evaluation metrics, which implies that previous evaluations of the IMERG rainfall product based on a relatively low-density gauge network might have underestimated its performance. The decreasing trends of probability of detection with gauge density indicate a limited ability to capture light rainfall events in the IMERG rainfall product. However, IMERG tends to overestimate (underestimate) light (heavy) rainfall events, which is a consistent feature that does not show strong dependency on gauge densities. The results provide valuable insights for the improvement of a rainfall retrieval algorithm adopted in the IMERG rainfall product.


2015 ◽  
Vol 16 (4) ◽  
pp. 1676-1699 ◽  
Author(s):  
Luciana K. Cunha ◽  
James A. Smith ◽  
Witold F. Krajewski ◽  
Mary Lynn Baeck ◽  
Bong-Chul Seo

Abstract The NEXRAD program has recently upgraded the WSR-88D network observational capability with dual polarization (DP). In this study, DP quantitative precipitation estimates (QPEs) provided by the current version of the NWS system are evaluated using a dense rain gauge network and two other single-polarization (SP) rainfall products. The analyses are performed for the period and spatial domain of the Iowa Flood Studies (IFloodS) campaign. It is demonstrated that the current version (2014) of QPE from DP is not superior to that from SP mainly because DP QPE equations introduce larger bias than the conventional rainfall–reflectivity [i.e., R(Z)] relationship for some hydrometeor types. Moreover, since the QPE algorithm is based on hydrometeor type, abrupt transitions in the phase of hydrometeors introduce errors in QPE with surprising variation in space that cannot be easily corrected using rain gauge data. In addition, the propagation of QPE uncertainties across multiple hydrological scales is investigated using a diagnostic framework. The proposed method allows us to quantify QPE uncertainties at hydrologically relevant scales and provides information for the evaluation of hydrological studies forced by these rainfall datasets.


2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Mohammed T. Mahmoud ◽  
Safa A. Mohammed ◽  
Mohamed A. Hamouda ◽  
Mohamed M. Mohamed

The influence of topographical characteristics and rainfall intensity on the accuracy of satellite precipitation estimates is of importance to the adoption of satellite data for hydrological applications. This study evaluates the three GPM IMERG V05B products over the arid country of Saudi Arabia. Statistical indices quantifying the performance of IMERG products were calculated under three evaluation techniques: seasonal-based, topographical, and rainfall intensity-based. Results indicated that IMERG products have the capability to detect seasons with the highest precipitation values (spring) and seasons with the lowest precipitation (summer). Moreover, results showed that IMERG products performed well under various rainfall intensities, particularly under light rain, which is the most common rainfall in arid regions. Furthermore, IMERG products exhibited high detection accuracy over moderate elevations, whereas it had poor performance over coastal and mountainous regions. Overall, the results confirmed that the performance of the final-run product surpassed the near-real-time products in terms of consistency and errors. IMERG products can improve temporal resolution and play a significant role in filling data gaps in poorly gauged regions. However, due to the errors in IMERG products, it is recommended to use sub-daily rain gauge data in satellite calibration for better rainfall estimation over arid and semiarid regions.


2014 ◽  
Vol 71 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Petr Sýkora ◽  
David Stránský ◽  
Vojtěch Bareš

Commercial microwave links (MWLs) were suggested about a decade ago as a new source for quantitative precipitation estimates (QPEs). Meanwhile, the theory is well understood and rainfall monitoring with MWLs is on its way to being a mature technology, with several well-documented case studies, which investigate QPEs from multiple MWLs on the mesoscale. However, the potential of MWLs to observe microscale rainfall variability, which is important for urban hydrology, has not been investigated yet. In this paper, we assess the potential of MWLs to capture the spatio-temporal rainfall dynamics over small catchments of a few square kilometres. Specifically, we investigate the influence of different MWL topologies on areal rainfall estimation, which is important for experimental design or to a priori check the feasibility of using MWLs. In a dedicated case study in Prague, Czech Republic, we collected a unique dataset of 14 MWL signals with a temporal resolution of a few seconds and compared the QPEs from the MWLs to reference rainfall from multiple rain gauges. Our results show that, although QPEs from most MWLs are probably positively biased, they capture spatio-temporal rainfall variability on the microscale very well. Thus, they have great potential to improve runoff predictions. This is especially beneficial for heavy rainfall, which is usually decisive for urban drainage design.


2016 ◽  
Vol 8 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Sunil Ghaju ◽  
Knut Alfredsen

High spatial variability of precipitation over Nepal demands dense network of rain-gauge stations. But to set-up a dense rain gauge network is almost impossible due to mountainous topography of Nepal. Also the dense rain gauge network will be very expensive and some time impossible for timely maintenance. Satellite precipitation products are an alternative way to collect precipitation data with high temporal and spatial resolution over Nepal. In this study, the satellite precipitation products TRMM and GSMaP were analyzed. Precipitation was compared with ground based gauge precipitation in the Narayani basin, while the applicability of these rainfall products for runoff simulation were tested using the LANDPINE model for Trishuli basin which is a sub-basin within Narayani catchment. The Nash-Sutcliffe efficiency calculated for TRMM and GSMaP from point to pixel comparison is negative for most of stations. Also the estimation bias for both the products is negative indicating under estimation of precipitation by satellite products, with least under estimation for the GSMaP precipitation product. After point to pixel comparison, satellite precipitation estimates were used for runoff simulation in the Trishuli catchment with and without bias correction for each product. Among the two products, TRMM shows good simulation result without any bias correction for calibration and validation period with scaling factor of 2.24 for precipitation which is higher than that for gauge precipitation. This suggests, it could be used for runoff simulation to the catchments where there is no precipitation station. But it is too early to conclude by just looking into one catchment. So extensive study need to be done to make such conclusion.Journal of Hydrology and Meteorology, Vol. 8(1) p.22-31


2020 ◽  
Vol 12 (4) ◽  
pp. 678 ◽  
Author(s):  
Zhi-Weng Chua ◽  
Yuriy Kuleshov ◽  
Andrew Watkins

This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates over Australia across an 18 year period from 2001 to 2018. The evaluation was performed on a monthly time scale and used both point and gridded rain gauge data as the reference dataset. Overall statistics demonstrated that satellite precipitation estimates did exhibit skill over Australia and that gauge-blending yielded a notable increase in performance. Dependencies of performance on geography, season, and rainfall intensity were also investigated. The skill of satellite precipitation detection was reduced in areas of elevated topography and where cold frontal rainfall was the main precipitation source. Areas where rain gauge coverage was sparse also exhibited reduced skill. In terms of seasons, the performance was relatively similar across the year, with austral summer (DJF) exhibiting slightly better performance. The skill of the satellite precipitation estimates was highly dependent on rainfall intensity. The highest skill was obtained for moderate rainfall amounts (2–4 mm/day). There was an overestimation of low-end rainfall amounts and an underestimation in both the frequency and amount for high-end rainfall. Overall, CMORPH and GSMaP datasets were evaluated as useful sources of satellite precipitation estimates over Australia.


2005 ◽  
Vol 2 ◽  
pp. 103-109 ◽  
Author(s):  
M. C. Llasat ◽  
T. Rigo ◽  
M. Ceperuelo ◽  
A. Barrera

Abstract. The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, using the β parameter that is related with the greater or lesser convective character of the precipitation event, and its time and space distribution throughout the entire series of the samples. The first approach was applied to 126 rain gauges of the Automatic System of Hydrologic Information of the Internal Basins of Catalonia (NE Spain). Data are series of 5-min rain rate, for the period 1996-2002, and a long series of 1-min rain rate starting in 1927. Rainfall events were classified according to this parameter. The second approach involved using information obtained by the meteorological radar located near Barcelona. A modified version of the SCIT method for the 3-D analysis and a combination of different methods for the 2-D analysis were applied. Convective rainfall charts and β charts were reported. Results obtained by the rain gauge network and by the radar were compared. The application of the β parameter to improve the rainfall regionalisation was demonstrated.


2008 ◽  
Vol 5 (5) ◽  
pp. 2975-3003 ◽  
Author(s):  
E. Goudenhoofdt ◽  
L. Delobbe

Abstract. Accurate quantitative precipitation estimates are of crucial importance for hydrological studies and applications. When spatial precipitation fields are required, rain gauge measurements are often combined with weather radar observations. In this paper, we evaluate several radar-gauge merging methods with various degrees of complexity: from mean field bias correction to geostatical merging techniques. The study area is the Walloon region of Belgium, which is mostly located in the Meuse catchment. Observations from a C-band Doppler radar and a dense rain gauge network are used to retrieve daily rainfall accumulations over this area. The relative performance of the different merging methods are assessed through a comparison against daily measurements from an independent gauge network. A 3-year verification is performed using several statistical quality parameters. It appears that the geostatistical merging methods perform best with the mean absolute error decreasing by 40% with respect to the original data. A mean field bias correction still achieves a reduction of 25%. A seasonal analysis shows that the benefit of using radar observations is particularly significant during summer. The effect of the network density on the performance of the methods is also investigated. For this purpose, a simple approach to remove gauges from a network is proposed. The analysis reveals that the sensitivity is relatively high for the geostatistical methods but rather small for the simple methods. The geostatistical methods give the best results for all network densities except for a very low density of 1 gauge per 500 km2 where a range-dependent adjustment complemented with a static local bias correction performs best.


2015 ◽  
Vol 12 (10) ◽  
pp. 10389-10429
Author(s):  
K. Sunilkumar ◽  
T. Narayana Rao ◽  
S. Satheeshkumar

Abstract. This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00–02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30 km in both monsoons. Evaluation of high-resolution rainfall estimates from various MPEs against the gauge rainfall indicates that all MPEs underestimate the weak and heavy rain. The MPEs exhibit good detection skills of rain at both 3 and 24 h resolutions, however, considerable improvement is observed at 24 h resolution. Among different MPEs, Climate Prediction Centre morphing technique (CMORPH) performs better at 3 hourly resolution in both monsoons. The performance of TRMM multisatellite precipitation analysis (TMPA) is much better at daily resolution than at 3 hourly, as evidenced by better statistical metrics than the other MPEs. All MPEs captured the basic shape of diurnal cycle and the amplitude quite well, but failed to reproduce the weak/insignificant diurnal cycle in NEM.


Sign in / Sign up

Export Citation Format

Share Document