scholarly journals GABAergic Modulation of Response Inhibition and Interference Control

2020 ◽  
Author(s):  
Kaja Faßbender ◽  
Katharina Bey ◽  
Julia V. Lippold ◽  
rene hurlemann ◽  
Ulrich Ettinger

Background: Inhibitory control is a crucial executive function with high relevance to mental and physical wellbeing. However, there are still unanswered questions regarding its neural mechanisms, including the role of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Aims: This study examined the effects of lorazepam (0.5 mg and 1 mg), a positive allosteric modulator at the GABAA receptor, on response inhibition and interference control. We also explored the heterogeneity of inhibitory control and calculated delta plots to explore whether lorazepam affects the gradual build-up of inhibition and activation over time. Method: A sample of N=50 healthy participants performed antisaccade, Eriksen flanker and Simon tasks in a within-subjects, placebo-controlled, double-blind randomised design. Results: Lorazepam increased mean reaction times (MRT) and error rates dose-dependently in all tasks (p≤.005). In the antisaccade and Simon tasks, lorazepam increased congruency effects for error rate (p≤.029) but not for MRT (p≥.587). In the Eriksen flanker task, both congruency effects were increased by the drug (p≤.031). Delta plots did not reflect any drug-induced changes in inhibition and activation over time. Delta plots for MRT in the Simon task were negative-going, as expected, whereas those for the antisaccade and flanker tasks were positive-going. Conclusions: This study provides clear evidence for GABAergic involvement in inhibitory control. Furthermore, our findings highlight the diversity of inhibitory control while also pointing out similarities between different inhibitory control tasks. In contrast to MRTs and error rates, the cognitive processes provided by delta plots appear not to be sensitive to GABAergic modulation.Draft version, 02.04.2020. This paper has not been peer reviewed. Please do not copy or cite without author's permission.

2021 ◽  
pp. 026988112110324
Author(s):  
Kaja Faßbender ◽  
Katharina Bey ◽  
Julia V Lippold ◽  
Behrem Aslan ◽  
René Hurlemann ◽  
...  

Background: Inhibitory control is a crucial executive function with high relevance to mental and physical well-being. However, there are still unanswered questions regarding its neural mechanisms, including the role of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Aims: This study examined the effects of lorazepam (0.5 mg and 1 mg), a positive allosteric modulator at the GABAA receptor, on response inhibition and interference control. We also explored the heterogeneity of inhibitory control and calculated delta plots to explore whether lorazepam affects the gradual build-up of inhibition and activation over time. Methods: N = 50 healthy participants performed antisaccade, Eriksen flanker and Simon tasks in a within-subjects, placebo-controlled, double-blind randomized design. Results: Lorazepam increased reaction time (RT) and error rates dose dependently in all tasks ( p ⩽ 0.005). In the antisaccade and Simon tasks, lorazepam increased congruency effects for error rate ( p ⩽ 0.029) but not RT ( p ⩾ 0.587). In the Eriksen flanker task, both congruency effects were increased by the drug ( p ⩽ 0.031). Delta plots did not reflect drug-induced changes in inhibition and activation over time. Delta plots for RT in the Simon task were negative-going, as expected, whereas those for the antisaccade and flanker tasks were positive-going. Conclusions: This study provides evidence for GABAergic involvement in performance on response inhibition and interference control tasks. Furthermore, our findings highlight the diversity of the broader construct of inhibitory control while also pointing out similarities between different inhibitory control tasks. In contrast to RT and error rates, the cognitive processes indexed by delta plots may not be sensitive to GABAergic modulation.


2019 ◽  
Vol 33 (6) ◽  
pp. 678-687 ◽  
Author(s):  
Wiebke Bensmann ◽  
Nicolas Zink ◽  
Veit Roessner ◽  
Ann-Kathrin Stock ◽  
Christian Beste

Background: Catecholamines affect response inhibition, but the effects of methylphenidate on inhibitory control in healthy subjects are heterogenous. Theoretical considerations suggest that working memory demands and learning/familiarization processes are important factors to consider regarding catecholaminergic effects on response inhibition. Aims: The purpose of this study was to examine the role of working memory demands and familiarization for methylphenidate effects on response inhibition. Methods: Twenty-eight healthy adults received a single dose of methylphenidate (0.5 mg/kg) or placebo in a randomised, double-blind, crossover study design. The subjects were tested using a working memory-modulated response inhibition paradigm that combined a Go/Nogo task with a mental rotation task. Results: Methylphenidate effects were largest in the most challenging mental rotation condition. The direction of effects depended on the extent of the participants’ task experience. When performing the task for the first time, methylphenidate impaired response inhibition performance in the most challenging mental rotation condition, as reflected by an increased false alarm rate. In sharp contrast to this, methylphenidate seemed to improve response execution performance in the most challenging condition when performing the task for the second time as reflected by reaction times on Go trials. Conclusion: Effects of catecholamines on inhibitory control processes depend on the interplay of two factors: (a) working memory demands, and (b) learning or familiarization with a task. It seems that the net effect of increases in gain control and decreases in working memory processes determines the methylphenidate effect on response inhibition. Hence, crossover study designs likely underestimate methylphenidate effects on cognitive functions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mami Miyasaka ◽  
Michio Nomura

Abstract Reward and punishment influence inhibitory performance, but developmental changes in these effects are not well understood. Our aim was to understand the effects of potential reward gains and losses (as indices of reward and punishment) on response inhibition among children and adolescents. We conducted financial and non-financial go/no-go tasks with 40 boys (8- to 15-year-olds). Participants gained or lost money depending on their performance on the financial task, and score rankings were compared to participants on the non-financial task. We found that adolescents’ inhibitory control, as reflected in their reaction times when they made inhibitory errors, was lower in the reward-present condition than in the reward-absent condition, although accuracy was higher when the reward was available for all participants. Additionally, inhibitory control, specifically among adolescents, was higher for financial feedback than for non-financial feedback. These results suggest that the effects of reward and feedback type on motor impulsivity differ as a function of developmental stage. We discuss the theoretical implications of the present findings in terms of the interaction between emotional feedback and response inhibition among children and adolescents.


2018 ◽  
Vol 71 (5) ◽  
pp. 1219-1233 ◽  
Author(s):  
Angela de Bruin ◽  
Sergio Della Sala

Older adults have been argued to have impoverished inhibitory control compared to younger adults. However, these effects of age may depend on processing speed and their manifestation may furthermore depend on the type of inhibitory control task that is used. We present two experiments that examine age effects on inhibition across three tasks: a Simon arrow, static flanker and motion flanker task. The results showed overall slower reaction times (RTs) for older adults on all three tasks. However, effects of age on inhibition costs were only found for the Simon task, but not for the two flanker tasks. The motion flanker task furthermore showed an effect of baseline processing speed on the relation between age and inhibition costs. Older adults with slower baseline responses showed smaller inhibition costs, suggesting they were affected less by the flanker items than faster older adults. These findings suggest that effects of age on inhibition are task dependent and can be modulated by task-specific features such as the type of interference, type of stimuli and processing speed.


2016 ◽  
Vol 21 (3) ◽  
pp. 303-315 ◽  
Author(s):  
Marie-Eve Joret ◽  
Filip Germeys ◽  
Yori Gidron

The relationship between music training and executive functions has remained inconsistent in previous studies, possibly due to methodological limitations. This study aims to investigate cognitive inhibitory control in children (9–12 years old) with and without musical training, while carefully considering confounding variables. To assess executive functions, the Simon task was used, measuring reaction times (RTs) and error rates on congruent and incongruent trials. Information on important variables such as bilingualism, socio-economic status (SES), music pedagogy and amount of musical training was collected through a parental questionnaire. Furthermore, verbal and non-verbal intelligence were assessed with validated tests to consider their effects as well. The results showed that the samples did not significantly differ in background variables. The analysis of the RT data on the Simon task revealed a significant group × congruency interaction, such that musically trained children showed a reduced magnitude of the congruency effect (RTs on incongruent trials – RTs on congruent trials) compared to non-musicians. To conclude, music training seems to be associated with enhanced cognitive inhibitory control in well-matched samples.


2020 ◽  
Author(s):  
Claire O'Callaghan ◽  
Frank Hubert Hezemans ◽  
Rong Ye ◽  
Catarina Rua ◽  
P Simon Jones ◽  
...  

Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomised crossover design, 19 people with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7T imaging of the locus coeruleus using a neuromelanin-sensitive magnetisation transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in Parkinson's disease patients. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalised treatment approaches.


Author(s):  
Tania Moretta ◽  
Giulia Buodo

AbstractGiven the current literature debate on whether or not Problematic Social Network Sites Use (PSNSU) can be considered a behavioral addiction, the present study was designed to test whether, similarly to addictive behaviors, PSNSU is characterized by a deficit in inhibitory control in emotional and addiction-related contexts. Twenty-two problematic Facebook users and 23 nonproblematic users were recruited based on their score on the Problematic Facebook Use Scale. The event-related potentials were recorded during an emotional Go/Nogo Task, including Facebook-related, unpleasant, pleasant, and neutral pictures. The amplitudes of the Nogo-N2 and the Nogo-P3 were computed as measures of the detection of response conflict and response inhibition, respectively. Reaction times and accuracy also were measured. The results showed that problematic users were less accurate on both Go and Nogo trials than nonproblematic users, irrespective of picture content. For problematic users only, the Nogo-P3 amplitude was lower to Facebook-related, pleasant, and neutral than to unpleasant stimuli, suggesting less efficient inhibition with natural and Facebook-related rewards. Of note, all participants were slower to respond to Facebook-related and pleasant Go trials compared with unpleasant and neutral pictures. Consistently, the Nogo-N2 amplitude was larger to Facebook-related than all other picture contents in both groups. Overall, the findings suggest that PSNSU is associated with reduced inhibitory control. These results should be considered in the debate about the neural correlates of PSNSU, suggesting more similarities than differences between PSNSU and addictive behaviors.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hainan Fan ◽  
Shuai Qi ◽  
Guoyuang Huang ◽  
Zhao Xu

Background. Inhibitory control deficits may be one important cause for smartphone addiction. The available studies have shown that acute aerobic exercise may improve the inhibitory control. However, there is still lack of research on how regimens of an acute exercise affect this inhibitory control. The present study was to examine the effects of an acute aerobic exercise at three different exercise intensities on changes in the inhibitory control function including response inhibition and interference control in college students with smartphone addiction. Methods. Participants (n = 30; age 20.03 ± 0.96 years) with smartphone addiction were identified by the Mobile Phone Addiction Tendency Scale for College Students and randomized to study 1 and study 2 with 15 individuals each. Fifteen participants in study 1 were tested by the Go/NoGo task to explore the response inhibition, while other fifteen in study 2 were tested by the Flanker task to examine the interference control. The participants in study 1 and 2 were randomly assigned to three groups (5 in each) with exercising at low, moderate, and high intensity. The individual response inhibition and interference control were measured before and after 30 minutes acute aerobic exercise, respectively. Results. In study 1, the accuracy of NoGo stimulus after 30 minutes of acute aerobic exercise was significantly increased p ≤ 0.001 while the response time (RT) of Go stimulus was significantly decreased p ≤ 0.001 . The largest changes occurred in the moderate-intensity group for the accuracy of NoGo stimulus p = 0.012 and for the RT of Go stimulus p ≤ 0.001 . The results in study 2 showed no significant change in all three groups after exercise. Conclusions. 30 minutes of acute aerobic exercise could effectively elicit changes of the response inhibition in college students with smartphone addiction. The largest improvement was observed in the moderate intensity of an acute aerobic exercise in college students with smartphone addiction.


2009 ◽  
Vol 23 (4) ◽  
pp. 183-190 ◽  
Author(s):  
Björn Albrecht ◽  
Hartmut Heinrich ◽  
Daniel Brandeis ◽  
Henrik Uebel ◽  
Juliana Yordanova ◽  
...  

Response processing may comprise multiple systems working in parallel at different functional levels of performance monitoring. In time-frequency decompositions of response-locked event-related potentials from adults, a subprocess operating in the delta frequency band was interpreted as an index of cognitive error monitoring, distinguishable from a process with theta frequency probably related to motor control. However, it remains unclear whether such subprocesses can also be distinguished in children. In the current study, error processing was assessed in 22 normal boys aged 8 to 15 years using an Erikson Flanker task. Performance data revealed the expected indices of conflicting task demands, such as increased reaction times and error rates. A clear error-negativity was found in the response-locked event-related potentials after incompatible stimuli, and correct responses show a slow negative deflection immediately preceding the button-press, which is absent in errors. Time-frequency decompositions disclosed that a subprocess in the lower delta band preceding correct responses may reflect a more general action monitoring process sensitive to conflicting task demands that, moreover, may prevent one from making an error if it is active early enough. Processes in the delta and theta bands are modulated specifically by errors and may index motor-related monitoring in children. Moreover, these processes occurred considerably earlier for correct responses compared to errors, suggesting that their timing reflects some performance capacity. These considerations may help to clarify response processing in tasks with conflicting demands.


Sign in / Sign up

Export Citation Format

Share Document