scholarly journals Transcranial Focused Ultrasound Alters Conflict and Emotional Processing, Physiology, and Performance II: Right Anterior Insula/Frontal Operculum Targeting

2020 ◽  
Author(s):  
Maria E Fini ◽  
William J Tyler

The dorsal anterior cingulate cortex (dACC) operates as an integrator of bottom-up and top-down signals and is implicated in both cognitive control and emotional processing. The dACC is believed to be causally involved in switching between attention networks, and previous work has linked it to cognitive performance, concentration, relaxation, and emotional distraction. The present study was designed to evaluate the feasibility of influencing default mode network (DMN) activity and emotional attention by targeting and modulating the dACC with transcranial focused ultrasound (tFUS). Subjects were divided into two groups, one receiving MR-neuronavigated tFUS to the dACC and the other an identical, but inactive tFUS sham. Subjects performed a modified version of the Erikson flanker paradigm using fear and neutral faces as emotional background distractors. Our observations demonstrate that tFUS can be targeted to the human dACC to produce effects consistent with those expected from relaxed contention, including significantly reduced reaction time slowing due to emotional distractors, and an increase in parasympathetic markers of the HRV. These results suggest that tFUS altered emotional processing and enhanced sustained attention, perhaps by facilitating reduced attentional engagement with emotional distractors and reduced need for attention switching evidenced by significant effects on event related potentials (ERPs), reduced alpha suppression, and modulation of delta and theta EEG activity. We conclude that the dACC represents a viable neuroanatomical target for tFUS in order to modulate DMN activity, including emotional attention, conflict resolution, and cognitive control. These effects of dACC-targeted tFUS may prove useful for treating certain mental health disorders known to involve perturbed DMN activity, such as depression and anxiety.

2020 ◽  
Author(s):  
Maria Fini ◽  
William J. Tyler

ABSTRACTThe dorsal anterior cingulate cortex (dACC) operates as an integrator of bottom-up and top-down signals and is implicated in both cognitive control and emotional processing. The dACC is believed to be causally involved in switching between attention networks, and previous work has linked it to cognitive performance, concentration, relaxation, and emotional distraction. The present study was designed to evaluate the feasibility of influencing default mode network (DMN) activity and emotional attention by targeting and modulating the dACC with transcranial focused ultrasound (tFUS). Subjects were divided into two groups, one receiving MR-neuronavigated tFUS to the dACC and the other an identical, but inactive tFUS sham. Subjects performed a modified version of the Erikson flanker paradigm using fear and neutral faces as emotional background distractors. Our observations demonstrate that tFUS can be targeted to the human dACC to produce effects consistent with those expected from relaxed contention, including significantly reduced reaction time slowing due to emotional distractors, and an increase in parasympathetic markers of the HRV. These results suggest that tFUS altered emotional processing and enhanced sustained attention, perhaps by facilitating reduced attentional engagement with emotional distractors and reduced need for attention switching evidenced by significant effects on event related potentials (ERPs), reduced alpha suppression, and modulation of delta and theta EEG activity. We conclude that the dACC represents a viable neuroanatomical target for tFUS in order to modulate DMN activity, including emotional attention, conflict resolution, and cognitive control. These effects of dACC-targeted tFUS may prove useful for treating certain mental health disorders known to involve perturbed DMN activity, such as depression and anxiety.


2007 ◽  
Vol 19 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Ethan Kross ◽  
Tobias Egner ◽  
Kevin Ochsner ◽  
Joy Hirsch ◽  
Geraldine Downey

Rejection sensitivity (RS) is the tendency to anxiously expect, readily perceive, and intensely react to rejection. This study used functional magnetic resonance imaging to explore whether individual differences in RS are mediated by differential recruitment of brain regions involved in emotional appraisal and/or cognitive control. High and low RS participants were scanned while viewing either representational paintings depicting themes of rejection and acceptance or nonrepresentational control paintings matched for positive or negative valence, arousal and interest level. Across all participants, rejection versus acceptance images activated regions of the brain involved in processing affective stimuli (posterior cingulate, insula), and cognitive control (dorsal anterior cingulate cortex; medial frontal cortex). Low and high RS individuals' responses to rejection versus acceptance images were not, however, identical. Low RS individuals displayed significantly more activity in left inferior and right dorsal frontal regions, and activity in these areas correlated negatively with participants' self-report distress ratings. In addition, control analyses revealed no effect of viewing negative versus positive images in any of the areas described above, suggesting that the aforementioned activations were involved in rejection-relevant processing rather than processing negatively valenced stimuli per se. Taken together, these findings suggest that responses in regions traditionally implicated in emotional processing and cognitive control are sensitive to rejection stimuli irrespective of RS, but that low RS individuals may activate prefrontal structures to regulate distress associated with viewing such images.


2020 ◽  
Author(s):  
Lauren Frances Fournier ◽  
Julia Blayne McDonald ◽  
Peter E Clayson ◽  
Edelyn Verona

Inhibitory control, the ability to stop or prevent an action, is of relevance to disorders marked by increased disinhibition and impulsivity, including some facets of psychopathy. Because aspects of cognitive control (including inhibitory control) and emotion are theorized to compete for processing resources, emotional conditions may exacerbate aggressive, impulsive, and potentially harmful behaviors. The present study examined relationships between specific facets of psychopathy and inhibitory control in the context of positive, negative, and neutral emotional stimuli in a community sample using event-related potentials during an emotional-linguistic Go/No-Go task. Results indicated distinct cognition-emotion interactions for each facet of psychopathy. High scorers on the interpersonal facet exhibited decreased inhibitory processing in the presence of emotional stimuli, and decreased emotional processing in the presence of inhibitory demands, suggesting reciprocal interference between cognition and emotion. Higher scores on the callous affect facet were associated with lower emotion and inhibition processing, except when stimuli were most engaging (emotional No-Go trials). Higher lifestyle facet scores related to reciprocal facilitation between inhibition and emotion processing. Finally, higher scores on the antisocial facet were associated with poorer behavioral inhibition overall. Results provide novel evidence for interactions between affective processing and cognitive control among individuals high on distinct psychopathic traits.


2002 ◽  
Vol 14 (4) ◽  
pp. 637-645 ◽  
Author(s):  
Ralph H. B. Benedict ◽  
David W. Shucard ◽  
Michael P. Santa Maria ◽  
Janet L. Shucard ◽  
Jose P. Abara ◽  
...  

The anterior cingulate cortex (ACC) is believed to mediate conscious information processing or high-capacity attention. However, previous functional imaging studies have largely relied on tasks that involve motor function as well as attention. The work from our group utilizing an auditory continuous performance task demonstrated increased activity in a caudal division of the ACC that borders the supplementary motor area (SMA). Activity in this region was attributed to motor responding as well as attention. In the present study, we used15O H2O positron emission tomography (PET) to map brain activation during nonmotor, covert auditory attention. Our hypothesis was that a different region within the ACC, anterior to the SMA, would be active during covert attention (CA). Six men and six women were asked to monitor aurally presented syllables presented at a 1-sec interstimulus interval. During the CA condition, subjects were asked to continuously discriminate target (.19 probability) from nontarget stimuli. Simultaneous recording of event-related potentials (ERPs) confirmed the discrimination of target and nontarget stimuli and the allocation of attention capacity. Comparison of the monitored versus nonmonitored presentation of stimuli demonstrated significant activity in a rostral/dorsal division of the right ACC, anterior to SMA. Other regions of activation included the lateral prefrontal cortex and posterior superior temporal gyrus in the left hemisphere, consistent with neurocognitive models of language and vigilance. We conclude that a rostral/dorsal subdivision of the right ACC is specific for conscious attention during auditory processing, in contrast to premotor response formation.


Author(s):  
Monika Equit ◽  
Justine Niemczyk ◽  
Anna Kluth ◽  
Carla Thomas ◽  
Mathias Rubly ◽  
...  

Abstract. Objective: Fecal incontinence and constipation are common disorders in childhood. The enteric nervous system and the central nervous system are highly interactive along the brain-gut axis. The interaction is mainly afferent. These afferent pathways include centers that are involved in the central nervous processing of emotions as the mid/posterior insula and the anterior cingulate cortex. A previous study revealed altered processing of emotions in children with fecal incontinence. The present study replicates these results. Methods: In order to analyze the processing of emotions, we compared the event-related potentials of 25 children with fecal incontinence and constipation to those of 15 control children during the presentation of positive, negative, and neutral pictures. Results: Children with fecal incontinence and constipation showed altered processing of emotions, especially in the parietal and central cortical regions. Conclusions: The main study results of the previous study were replicated, increasing the certainty and validity of the findings.


2019 ◽  
Author(s):  
Solange Denervaud ◽  
Jean-François Knebel ◽  
Emeline Mullier ◽  
Patric Hagmann ◽  
Micah M. Murray

Within an inherently dynamic environment, unexpected outcomes are part of daily life. Performance monitoring allows us to detect these events and adjust behavior accordingly. The necessity of such an optimal functioning has made error-monitoring a prominent topic of research over the last decades. Event-related potentials (ERPs) have differentiated between two brain components involved in error-monitoring: the error-related negativity (ERN) and error-related positivity (Pe) that are thought to reflect detection vs. emotional/motivational processing of errors, respectively. Both ERN and Pe depend on the protracted maturation of the frontal cortices and anterior cingulate through adolescence. To our knowledge, the impact of schooling pedagogy on error-monitoring and its brain mechanisms remains unknown and was the focus of the present study. Swiss schoolchildren completed a continuous recognition task while 64-channel EEG was recorded and later analyzed within an electrical neuroimaging framework. They were enrolled either in a Montessori curriculum (N=13), consisting of self-directed learning through trial-and-error activities with sensory materials, or a traditional curriculum (N=14), focused on externally driven activities mainly based on reward feedback. The two groups were controlled for age, gender, socio-economic status, parental educational style, and scores of fluid intelligence. The ERN was significantly enhanced in Montessori schoolchildren (driven by a larger response to errors), with source estimation differences localized to the cuneus and precuneus. In contrast, the Pe was enhanced in traditional schoolchildren (driven by a larger response to correct trials), with source estimation differences localized to the ventral anterior cingulate. Receiver operating characteristic (ROC) analysis demonstrated that the ERN and Pe could reliably classify if a child was following a Montessori or traditional curriculum. Brain activity subserving error-monitoring is modulated differently according to school pedagogy.


2020 ◽  
Author(s):  
Chenglong Cao ◽  
Jian Song ◽  
Binbin Liu ◽  
Jianren Yue ◽  
Yuzhao Lu ◽  
...  

Abstract Background: Cognitive impairments have been reported in patients with pituitary adenoma; however, there is a lack of knowledge of investigating the emotional stimuli processing in pituitary patients. Thus, we aimed to investigate whether there is emotional processing dysfunction in pituitary patients by recording and analyzing the late positive potential (LPP) elicited by affective stimuli.Methods: Evaluation of emotional stimuli processing by LPP Event related potentials (ERPs) was carried out through central- parietal electrode sites (C3, Cz, C4, P3, Pz, P4) on the head of the patients and healthy controls (HCs).Results: In the negative stimuli, the amplitude of LPP was 2.435 ± 0.419μV for HCs and 0.656 ± 0.427μV for patient group respectively ( p = 0.005). In the positive stimuli, the elicited electric potential 1.450 ± 0.316μV for HCs and 0.495 ± 0.322μV for patient group respectively ( p = 0.040). Moreover, the most obvious difference of LPP amplitude between the two groups existed in the right parietal region. On the right hemisphere (at the P4 site), the elicited electric potential was 1.993 ± 0.299μV for HCs and 0.269 ± 0.305μV for patient group respectively( p = 0.001).Conclusion: There are functional dysfunction of emotional stimuli processing in pituitary adenoma patients. Our research provides the electrophysiological evidence for the presence of cognitive dysfunction which need to be intervened in the pituitary adenoma patients.


Author(s):  
Shashikanta Tarai

This chapter discusses neurocognitive mechanisms in terms of latency and amplitudes of EEG signals in depression that are presented in the form of event-related potentials (ERPs). Reviewing the available literature on depression, this chapter classifies early P100, ERN, N100, N170, P200, N200, and late P300 ERP components in frontal, mid-frontal, temporal, and parietal lobes. Using auditory oddball paradigm, most of the studies testing depressive patients have found robust P300 amplitude reduction. Proposing EEG methods and summarizing behavioral, neuroanatomical, and electrophysiological findings, this chapter discusses how the different tasks, paradigms, and stimuli contribute to the cohesiveness of neural signatures and psychobiological markers for identifying the patients with depression. Existing research gaps are directed to conduct ERP studies following go/no-go, flanker interference, and Stroop tasks on global and local attentional stimuli associated with happy and sad emotions to examine anterior cingulate cortex (ACC) dysfunction in depression.


2020 ◽  
Vol 8 (3-4) ◽  
pp. 254-278
Author(s):  
Lisa V. Eberhardt ◽  
Ferdinand Pittino ◽  
Anna Scheins ◽  
Anke Huckauf ◽  
Markus Kiefer ◽  
...  

Abstract Emotional stimuli like emotional faces have been frequently shown to be temporally overestimated compared to neutral ones. This effect has been commonly explained by induced arousal caused by emotional processing leading to the acceleration of an inner-clock-like pacemaker. However, there are some studies reporting contradictory effects and others point to relevant moderating variables. Given this controversy, we aimed at investigating the processes underlying the temporal overestimation of emotional faces by combining behavioral and electrophysiological correlates in a temporal bisection task. We assessed duration estimation of angry and neutral faces using anchor durations of 400 ms and 1600 ms while recording event-related potentials. Subjective ratings and the early posterior negativity confirmed encoding and processing of stimuli’s emotionality. However, temporal ratings did not differ between angry and neutral faces. In line with this behavioral result, the Contingent Negative Variation (CNV), an electrophysiological index of temporal accumulation, was not modulated by the faces’ emotionality. Duration estimates, i.e., short or long responses toward stimuli of ambiguous durations of 1000 ms, were nevertheless associated with a differential CNV amplitude. Interestingly, CNV modulation was already observed at 600–700 ms after stimulus onset, i.e., long before stimulus offset. The results are discussed in light of the information-processing model of time perception as well as regarding possible factors of the experimental setup moderating temporal overestimation of emotional stimuli. In sum, combining behavioral and electrophysiological measures seems promising to more clearly understand the complex processes leading to the illusion of temporal lengthening of emotional faces.


1990 ◽  
Vol 13 (2) ◽  
pp. 201-233 ◽  
Author(s):  
Risto Näätänen

AbstractThis article examines the role of attention and automaticity in auditory processing as revealed by event-related potential (ERP) research. An ERP component called the mismatch negativity, generated by the brain's automatic response to changes in repetitive auditory input, reveals that physical features of auditory stimuli are fully processed whether or not they are attended. It also suggests that there exist precise neuronal representations of the physical features of recent auditory stimuli, perhaps the traces underlying acoustic sensory (“echoic”) memory. A mechanism of passive attention switching in response to changes in repetitive input is also implicated.Conscious perception of discrete acoustic stimuli might be mediated by some of the mechanisms underlying another ERP component (NI), one sensitive to stimulus onset and offset. Frequent passive attentional shifts might accountforthe effect cognitive psychologists describe as “the breakthrough of the unattended” (Broadbent 1982), that is, that even unattended stimuli may be semantically processed, without assuming automatic semantic processing or late selection in selective attention.The processing negativity supports the early-selection theory and may arise from a mechanism for selectively attending to stimuli defined by certain features. This stimulus selection occurs in the form ofa matching process in which each input is compared with the “attentional trace,” a voluntarily maintained representation of the task-relevant features of the stimulus to be attended. The attentional mechanism described might underlie the stimulus-set mode of attention proposed by Broadbent. Finally, a model of automatic and attentional processing in audition is proposed that is based mainly on the aforementioned ERP components and some other physiological measures.


Sign in / Sign up

Export Citation Format

Share Document