scholarly journals Greenhouse Gas Emissions from Hydropower Reservoirs

2012 ◽  
Vol 11 ◽  
pp. 37-42 ◽  
Author(s):  
Amit Kumar ◽  
M.P. Sharma

Hydropower reservoirs are found to emit about 35-70 times less greenhouse gas (GHG) compared to thermal power plants. The emissions not only depend on the type of eco-region in which the reservoir is located but also on the reservoir characteristics and water quality parameters. This paper reports the results of the impact of reservoir parameters and water quality characteristics on GHG emission from tropical, temperate and boreal reservoirs. For this purpose, linear equations are developed but the regression coeffi cient is found very poor. The R2 range for CO2 is 5×10-5 to 0.36 for tropical, temperate and boreal reservoirs and the R24 is 0.004- 0.244 respectively, which is far lower than 0.90, and cannot be accurately used for prediction. Thereafter, empirical regression equations are developed to see the combined impact of reservoir parameters and R2 is found as 0.48 for CO2 and 0.16 for CH4 for tropical, 0.34 and 0.37 for CO2 and CH4 respectively for temperate and 0.51 and 0.26 for boreal reservoirs. The R2 0.90 indicates that these equations cannot be used to accurately predict the emissions, but can be used to get some idea about emissions from the reservoirs.DOI: http://dx.doi.org/10.3126/hn.v11i0.7159 Hydro Nepal Vol.11 2011 pp.37-42

Author(s):  
Nguyễn Thị Thế Nguyên ◽  
Phạm Văn Hoàng ◽  
Nguyễn Mạnh Khải

: Emissions of greenhouse gases such as CO2 and CH4 from artificial reservoirs, especially wide lakes in the tropics as the Son La hydropower reservoir, are leading to global warming. CO2 and CH4 gases in hydropower reservoirs are caused by the decomposition of organic matter in the lakes. In this study, regression analysis was used for estimating the relationships among water quality parameters measured at the Son La hydropower reservoir and the fluxes of greenhouse gas emissions from the reservoir. The regression analysis was also applied to develop regression equations predicting emissions of greenhouse gases from the lake. Results of study showed that the CO2 emission from the Son La hydropower reservoir could be predictable from several water quality parameters of which 4 main factors are temperature, DO, alkalinity andpH. The amount of CH4 emission from the Son La hydropower reservoir has solid relationships with 3 main factors, including temperature, COD and pH. The regression equations predicting CO2 and CH4 with the correlation coefficient of 0.93 and 0.92 have been tested with real data and gave the good results. Since, they could be introduced in reality.


2021 ◽  
Vol 9 (5) ◽  
pp. 474
Author(s):  
René Rodríguez-Grimón ◽  
Nestor Hernando Campos ◽  
Ítalo Braga Castro

Since 2013, there has been an increase (>23%) in naval traffic using maritime routes and ports on the coastal fringe of Santa Marta, Colombia. Of major concern, and described by several studies, is the relationship between maritime traffic and coastal contamination. This study proposed a maritime traffic indicator considering the simultaneous effects of several relevant measurements of water quality parameters to estimate the impact of naval activity. The approach involved developing a model including the number of vessels, hull length, and permanence time in berths. In addition, water quality variables, considering climatic seasons, were used to verify association with maritime traffic and touristic activities. The high concentrations of total coliforms (TC) and dissolved/dispersed petroleum hydrocarbons in chrysene equivalents (DDPH) reported by the International Marina of Santa Marta (SM) were affected by the local anthropic activities, including tourism, naval traffic, and urban wastewater discharges. Moreover, our results suggest the occurrence of multiple chemical impacts within Tayrona National Natural Park (PNNT) affecting conservation goals. The estimation of the maritime traffic indicator proposed in this study may be an easy and more complete tool for future studies evaluating the impact of naval activities on environmental quality.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
MANOJ KUMAR SHUKLA

Present study points out the impact of Lockdown on the health of the Yamuna river at Delhi stretch by comparing prelockdown and Post-lockdown period by studying the reports of pollution monitoring agencies. Delhi segment of the Yamuna is highly polluted, where alongwith domestic sewage a huge quantity of industrial waste is being discharged continuously without proper treatment. Pre lockdown (March 2020) water quality parameters at three sampling stations named as Palla, Nizammuddin Bridge and Okhla barrage U/s in Delhi were, pH were 8.7, 7.3 and 7.2, DO were 17.1 mg/L, not detected in later two sites, BOD were 7.9 mg/L, 57 mg/L and 27 mg/L and COD were 28 mg/L, 90 mg/L and 95 mg/L respectively and postlockdown period (April 2020) the pH was 7.8, 7.2 and 7.1, DO was 8.3 mg/L, 2.4 mg/L and 1.2 mg/L BOD was 2 mg/L, 5.6 mg/ L and 6.1 mg/L and COD were 6 mg/L, 16 mg/L and 18 mg/L respectively. The study of these parameters at three sampling stations reveals that the lack of industrial pollutants discharging due to nationwide lockdown for COVID-19 pandemic had positive effect on water quality of this river. Water quality could be maintained by planned establishment of industries and setup of ETP with without gap between generation and treatment.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


Author(s):  
Paula Mohlenkamp ◽  
Charles Kaiaka Beebe ◽  
Margaret A. McManus ◽  
Angela Hiʻilei Kawelo ◽  
Keliʻiahonui Kotubetey ◽  
...  

In Hawaiʻi, the transition from customary subsistence flooded taro agroecosystems, which regulate stream discharge rate trapping sediment and nutrients, to a plantation-style economy (c. the 1840s) led to nearshore sediment deposition - smothering coral reefs and destroying adjacent coastal fisheries and customary fishpond mariculture. To mitigate sediment transport, Rhizophora mangle was introduced in estuaries across Hawai’i (c. 1902) further altering fishpond ecosystems. Here, we examine the impact of cultural restoration between 2012-2018 at Heʻeia Fishpond, a 600-800-year-old walled fishpond. Fishpond water quality was assessed by calculating water exchange rates, residence times, salinity distribution, and abundance of microbial indicators prior to and after restoration. We hypothesized that R. mangle removal and concomitant reconstruction of sluice gates would increase mixing and decrease bacterial indicator abundance in the fishpond. We find that Heʻeia Fishpond’s physical environment is primarily tidally driven; wind forcing and river flux are secondary drivers. Post-restoration, two gates in the northeastern region account for >80% of relative flux in the fishpond. Increase in exchange rates during spring and neap tide and shorter minimum water residence time corresponded with the reconstruction of a partially obstructed 56 m gap together with the installation of an additional sluice gate in the fishpond wall. Lower mean salinities post-restoration suggests increased freshwater influx due to R. mangle removal. Spatial distribution of microbial bio-indicator species inversely correlated with salinity. Average abundance of Enterococcus and Bacteroidales did not significantly change after restoration efforts, however, average abundance of a biomarker specific to birds nesting in the mangroves decreased significantly after restoration. This study demonstrates the positive impact of biocultural restoration regimes on water flushing and water quality parameters, encouraging the prospect of revitalizing this and other culturally and economically significant sites for sustainable aquaculture in the future.


2017 ◽  
Vol 3 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Rubia Akter ◽  
Md Rayhan Hossain ◽  
Md Motiur Rahman ◽  
BM Shahinur Rahman ◽  
KKU Ahmed

The study was carried out to explore the impact of probiotics on shrimp (Penaeus monodon) in the Shrimp Research Station ponds during the culture period of 90 days. The experiment was set in 9 on-station ponds having an area of 0.052?0.064 ha. Three treatments of the experiment were: super Ps probiotics broadcast all over the ponds mixed with clay (T1), probiotics broadca Zymetin st over the pond mixed with feed (T2) and control (without probiotics) the ponds (T3) and each treatments having 3 replicates. All Juvenile of shrimp were stocked at a density of 6.0 juv/m2 and was fed with quality feed (gold plus-grower) twice daily at the rate of 10.3% of shrimp biomass. Water quality parameters namely temperature, water depth, dissolved oxygen, pH, salinity, ammonia, nitrate, total alkalinity and transparency were within suitable range for shrimp growth without finding any stress. Growth of shrimp was measured and feed was adjusted after every fortnight. The average weight of shrimp in T1, T2 and T3 was 22.065 ±5.52, 19.87 ±4.98 and 11.01 ±0.86g, respectively. Higher growth was obtained from T1 followed by T2 and T3. Day after 90 of husbandry, all shrimp were harvested. The survivality rate of shrimp production was reckoned 80%. The production of shrimp was found 760 kg/ha in T1, 665 kg/ha in T2 and 205.19 kg/ha. in T3. So the highest production was found using super PS (T1). Food conversion ratio (FCR) of prawn was found higher (2.48) in T3 compared to T1 (1.83) and T2 (2.01). The result of the study is therefore revealed that probiotics paly a most important role in growth, survival and production of shrimp by maintaining good water quality environment throughout the culture period. It may be therefore concluded that probiotics can be utilized well the shrimp ponds to get higher growth and production keeping the congenial environment.Asian J. Med. Biol. Res. March 2017, 3(1): 88-93


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 20
Author(s):  
Kairat Ospanov ◽  
Timur Rakhimov ◽  
Menlibai Myrzakhmetov ◽  
Dariusz Andraka

The paper presents the results of research on the environmental impact of sewage ponds serving the city of Kostanay (Kazakhstan). The scope of the research included the determination of basic quality parameters of raw and treated wastewater, an analysis of the chemical composition of groundwater in the vicinity of sewage ponds, and the analysis of the water quality of the Tobol River. The obtained results indicate that sewage from storage ponds, infiltrating into the ground, caused groundwater pollution in the area of about 100 km2 around the reservoirs. Due to the fact that the groundwater aquifer in the vicinity of sewage ponds feeds the Tobol River, it also affects water quality in the river, which does not meet the requirements for most of the analyzed parameters.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mansoor A. Baluch ◽  
Hashim Nisar Hashmi

Water quality of the Indus River around the upper basin and the main river was evaluated with the help of statistical analysis. In order to analyze the similarities and dissimilarities for identifying the spatial variations in water quality of the Indus River and sources of contamination, multivariate statistical analysis, i.e., principle component analysis (PCA), cluster analysis, and descriptive analysis, was done. Data of 8 physicochemical quality parameters from 64 sampling stations belonging to 6 regions (labeled as M1, M2, M3, M4, M5, and M6) were used for analysis. The parameters used for assessing the water quality were pH, dissolved oxygen (DO), oxygen reducing potential (ORP), electrical conductivity (EC), total dissolved solids (TDS), salinity (%), and concentration of arsenic (As) and lead (Pb), respectively. PCA assisted in extracting and recognizing the responsible variation factors of water quality over the region, and the results showed three underlying factors including anthropogenic source pollution along with runoff due to rain and soil erosion were responsible for explaining the 93.87% of total variance. The parameters which were significantly influenced by anthropogenic impact are DO, EC, TDS (negative), and concentration of Pb (positive), while the concentration of As, % salinity, and ORP are affected by erosion and runoff due to rain. The worst pollution situation for regions M1 and M6 was due to the concentration of As which was approximately 400 μg/l (i.e., 40 times higher than minimum WHO recommendation). Furthermore, the results also indicated that, in the Indus River, three monitoring stations and five quality parameters are sufficient to have a reasonable confidence about the quality of water in this most important reserve of Pakistan.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 960
Author(s):  
Debjani Sihi ◽  
Biswanath Dari ◽  
Zhengjuan Yan ◽  
Dinesh Kumar Sharma ◽  
Himanshu Pathak ◽  
...  

Water contamination is often reported in agriculturally intensive areas such as the Indo-Gangetic Plain (IGP) in south-eastern Asia. We evaluated the impact of the organic and conventional farming of basmati rice on water quality during the rainy season (July to October) of 2011 and 2016 at Kaithal, Haryana, India. The study area comprised seven organic and seven conventional fields where organic farming has been practiced for more than two decades. Water quality parameters used for drinking (nitrate, NO3; total dissolved solids (TDS); electrical conductivity (EC) pH) and irrigation (sodium adsorption ratio (SAR) and residual sodium carbonate (RSC)) purposes were below permissible limits for all samples collected from organic fields and those from conventional fields over the long-term (~15 and ~20 years). Importantly, the magnitude of water NO3 contamination in conventional fields was approximately double that of organic fields, which is quite alarming and needs attention in future for farming practices in the IGP in south-eastern Asia.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Fiona-Annilow Wera ◽  
Teck-Yee Ling ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
Jongkar Grinang

Water quality downstream of a hydroelectric dam is potentially affected by dam operations and other land uses in the river basin. Previous short-distance studies below the large Bakun Dam indicated poorer water quality during closed spillway. However, the extent of the impact is still unknown. Such knowledge is essential for mitigating the impact of the dam. Thus, the objectives of this study were to determine the water quality up to a distance of 210 km under two spillway operations, namely, closed and opened spillways, and also to determine the changes in water quality from the predam condition. Physicochemical parameters were measured at 15 stations along the Rajang River. Results of this preliminary study indicated that there were significant differences in eight out of nine water quality parameters between opened and closed spillway operations with opened spillway showing better water quality. During closed spillway, as we approached the dam, there was an increasing acidity and a decreasing oxygen content. Furthermore, as the water flows downstream, the unhealthy DO level (<5 mg/L) extended up to 165 km and the linear model showed an increasing DO rate of 0.09 mg/L per km. With opened spillway, DO decreased exponentially from 9.74 mg/L towards the downstream direction to 7.67 mg/L. The increasing turbidity and TSS in the downstream direction indicate contributions from erosion due to other land uses. The river is polluted with organics as indicated by COD of Class IV or V with sources from the dam and the activities in the river basin. Compared to the predam condition, the regulated river is less turbid but warmer and higher in ammonia. Closed spillway led to lower DO and acidic water. However, opened spillway water pH and DO were similar to those in the predam condition. Thus, it is recommended that DO be consistently high enough for the health of sensitive aquatic organisms downstream.


Sign in / Sign up

Export Citation Format

Share Document