scholarly journals Study of Inhibitory Effect of Honey on Various Pathogenic and Non-Pathogenic Microorganisms

2013 ◽  
Vol 1 (4) ◽  
pp. 279-281 ◽  
Author(s):  
Richa Mistry ◽  
Gaurav Shah

Honey is a sweet food made by bees using nectar from flowers. The variety produced by honey bees (the genus Apis). The purpose of the present study was to determine in vitro antibacterial activities of different honey against various pathogenic and non-pathogenic organisms. Antibacterial activity of honey was determine by using well diffusion method in which different concentrations (20, 40, 60, 80, & 100 % v/v) of honey were used against various test pathogen. These organisms also tested against artificial honey for study of effect of sugar on its antibacterial activity. The results of these study was shown that wide range of variation in Zone of Inhibition (mm) of each type of honey and only very few organism inhibited due to effect of sugar. That shows there are also other components other than the sugar present in honey which ultimately responsible for antimicrobial activity. Due to obtaining maximum level of antibacterial activity of each honey it allow further investigation for treatment various infection and in curing of disease.DOI: http://dx.doi.org/10.3126/ijasbt.v1i4.9179 Int J Appl Sci Biotechnol, Vol. 1(4): 279-281

Author(s):  
O. A. Ayodele ◽  
J. O. Aribisala ◽  
A. T. Oseni ◽  
M. K. Oladunmoye

Microorganisms most especially bacteria, continue to develop resistance against antimicrobial agents; hence novel sources of antibiotics are urgently needed to reduce this problem. This study was carried out to investigate the antibacterial activities of ethanolic, chloroform and aqueous extracts of Apis mellifera (honey bee) on isolates of wound infections. The isolates used in this study were procured from University of Ilorin Teaching Hospital (UITH) and confirmed using morphological and biochemical tests. The isolates used include; Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pnuemoniae, Proteus mirabilis and Proteus vulgaris. Honey bees were collected from an apitherapist at Sunshine honey and agro foods, Akure, Ondo State Nigeria. The whole insect was used for in vitro antibacterial evaluation of the isolates using agar well diffusion method. Ethanolic extract of A. mellifera had the highest inhibitory activity with mean zones of inhibition ranging from 7.40 mm to 21.67 mm, chloroform extracts had moderate inhibitory activity ranging from 4.63 mm to 10.03 mm while the aqueous extract had the least activity with zones of inhibition ranging from 3.00 mm to 6.30 mm. However, no antibacterial activity was observed against P. aeruginosa for all the extracts. It is concluded that extracts of honey bees most especially the ethanolic extract have antibacterial activity and thus could be a potential antibacterial agent against isolates of wound infections.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kenza Ammor ◽  
Dalila Bousta ◽  
Sanae Jennan ◽  
Bahia Bennani ◽  
Abdellah Chaqroune ◽  
...  

The aim of this study is to investigate in vitro antioxidant and antibacterial activities of the aqueous and hydroethanolic extracts for aerial parts of Herniaria hirsuta. Extracts were screened for their possible antioxidant activities by three tests: DPPH free radical-scavenging, reducing power, and molybdenum systems. The screening of antibacterial activity of extracts was individually evaluated against sixteen bacteria species using a disc diffusion method. Flavonoids, total phenols, and tannins content were performed for both extracts. It shows higher content in the hydroethanolic extract. The hydroethanolic extract showed a significant antioxidant activity for the three methods studies to the aqueous extract, but nonsignificant results compared to the reference (BHT). However, both extracts have negative effect on the strains studies for the antibacterial activity.


2021 ◽  
Vol 07 (06) ◽  
Author(s):  
Tulsa Devi ◽  

Antibiotic resistance has become a global concern and hence, the search for other source of antimicrobials initiated to find a way to control infections in future. The main objective of this paper is to screen Giloy (Tinospora cordifolia) for its antibacterial activity. The stem of Tinospora cordifolia is used to prepare extract for determining it’s in vitro antibacterial activity as per the agar well diffusion method. In the agar well diffusion method 100μl of 24 hr broth culture of bacteria was aseptically and evenly swabbed on Mueller Hinton agar plates. Wells of about 8 mm diameter were aseptically cut using sterile cork-borer. 100 μl of plant extracts of different concentrations were then placed into the separate wells. The plates were incubated at 37 oC for 24hr. Antimicrobial activity of the giloy was determined by measuring the diameter of zone of inhibition. The methanolic extract of Tinospora cordifolia showed 13, 11, 9 and 5 mm zone of inhibition in S. aureus cultures by using 100, 75, 50 and 25 mg/ml concentration, respectively while hot water extract of Tinospora cordifolia showed 14, 12, 10 and 8 mm zone of inhibition for S. aureus by using 100, 75, 50 and 25 mg/ml concentration, respectively and the cold extract of Tinospora cordifolia showed 10, 8, 5 and 0 mm zone of inhibition for S. aureus by using 100, 75, 50 and 25mg/ml concentration, respectively. The methanolic extract of Tinospora cordifolia indicated 12, 10, 6 and 4 mm zone of inhibition in cultures of E.coli by using 100, 75, 50 and 25 mg/ml concentration, respectively and the hot water extract of Tinospora cordifolia showed 16, 14, 12 and 10 mm zone of inhibition in cultures of E.coli by using 100, 75, 50 and 25mg/ml concentration, respectively. The cold water extract of Tinospora cordifolia showed 13, 10, 8, and 5 mm zone of inhibition in cultures of E.coli by using 100, 75, 50 and 25 mg/ml concentration, respectively. It has been observed that Tinospora cordifolia showed very promising results as indicated by the zone of inhibition of bacterial culture through agar well diffusion method that varies from few mm to few cm. This study indicates the in-vitro antibacterial effect of Giloy which needs further validation through in-vivo studies.


2012 ◽  
Vol 64 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Irena Novakovic ◽  
Jelena Penjisevic ◽  
V. Sukalovic ◽  
Deana Andric ◽  
G. Roglic ◽  
...  

The derivatives of cinnamic acid and N-arylpiperazine show antibacterial activity. In this work the potential synergistic effect of cinnamyl derivatives of arylpiperazine in selected bacteria was investigated. The antibacterial activities of the derivatives were evaluated against Gram-positive bacteria: Staphylococcus aureus, Streptosporangium longisporum, Sarcina lutea, Micrococcus flavus, Clostridium sporogenes and Bacillus subtilis and Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis and Proteus vulgaris by the disc diffusion method. The minimum inhibitory concentration (MIC) against the selected bacteria was determined for all compounds that showed activity in the disc diffusion method. The majority of the investigated compounds displayed in vitro antibacterial activity. The effect of the type and structure of the substituent on the aromatic ring on the antibacterial activity is discussed. It was found that two derivatives expressed activity toward S. longisporum and P. aeruginosa that was almost as strong as that of amikacin.


Author(s):  
Ruvanthika Pn ◽  
Manikandan S

Objective: The objective of the study was to evaluate whether ethanolic extracts of Nelumbo nucifera (EENN) seedpod and quercetin (active component of NN) possess antibacterial proprieties against Gram (-) bacteria such as Escherichia coli and Pseudomonas aeruginosa and Gram (+) bacteria such as Staphylococcus aureus. Methods: Antibacterial activities of EENN seedpod and quercetin were investigated using disc diffusion method, minimum inhibitory concentration against E. coli and P. aeruginosa and Gram (+) bacteria such as S. aureus. Results: The antibacterial activity of both EENN seedpod and quercetin was found to be increased in dose-dependent manner. The maximum zone of inhibition was exhibited by both EENN seedpod and quercetin against E. coli (14 mm and 15 mm) and P. aeruginosa (13 mm and 15 mm). Gram-negative bacteria were more susceptible to the EENN seedpod extract and quercetin than Gram-positive bacteria.Conclusion: The results of the present study suggested that the effect of EENN seedpod and quercetin against the tested bacteria in vitro may contribute to the in vivo activities of the EENN seedpod and quercetin.


2021 ◽  
Vol 14 ◽  
Author(s):  
Saruchi ◽  
Anjali Saini ◽  
Vaneet Kumar

Introduction: Plants have been used for thousands of years to treat health disorders, to prevent diseases including epidemics, to flavor and conserve food. It is estimated that 250 to 500 thousand plant species are present on the earth, out of which only 10% is used as a source of food by humans and animals Objective: In the present work, antibacterial activity of five different Indian spices: turmeric, clove, pepper, cinnamon and garlic were investigated against pathogens isolated from wound samples. Method: The unknown bacteria were identified by different types of morphological and biochemical techniques such as serial dilutions, spread plate methods, morphological studies and biochemical tests. The swabs of the patients were inoculated in 10 mL of sterile nutrient broth and incubated at 37oC for 24 h. The antibacterial activities of these Indian spices were evaluated using the disk diffusion method. A suspension of the microorganisms to be tested was spread on nutrient agar and MacConkey agar medium. The filter paper discs were placed on the agar plates, which were saturated with extract of spice. The plates were then incubated at 37oC for 24 h.. After incubation, the zone of inhibition was determined by evaluating the diameter of the zone of inhibition. Results: The antibacterial activities of these Indian spices were evaluated using the disk diffusion method and the inhibitory zones were recorded. It was clear from the result that cinnamon had a larger inhibition zone against P1NA3, P1MAC1 and least with P2NA2. Garlic showed a larger zone of inhibition against P2NA2, P3NA3 and least for P1MAC1. Clove had maximum zone of inhibition against P1MAC2 and least with P3NA3. These spices showed zone of inhibition somewhat close to the control antibiotic drug ampicilline. Conclusion: P1MNC2 showed a maximum zone of inhibition with clove (3 cm) at 100%. P2NA2 showed the highest antibacterial activity with garlic (3.6 cm) at 100% and minimum with cinnamon (1.1cm) at 20%. P3NA3 showed maximum antibacterial activity result with garlic (4.2 cm) at 100% and minimum with clove (1.2cm) at 20%. Spices are economical, more accessible to most of the population in the world. So, medicinal plants should be encouraged to use as potential sources of new drugs.


2020 ◽  
Vol 83 (2) ◽  
pp. 331-337
Author(s):  
WENYUE WANG ◽  
RUI WANG ◽  
GUIJU ZHANG ◽  
FANGLI CHEN ◽  
BAOCAI XU

ABSTRACT Naturally occurring monoglyceride esters of fatty acids have been associated with a broad spectrum of antimicrobial activities. We used an automated turbidimetric method to measure the MIC and assess the antimicrobial activity of five monoglycerides (monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin) against pathogenic strains of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial activity of monocaprin was highest because its carbon chain is shorter than those of other monoglycerides. The MICs of monocaprin against S. aureus, B. subtilis, P. aeruginosa, and E. coli were 0.32, 0.32, 2.5, and 2.5 mg/mL, respectively. Monocaprin had antibacterial activity under neutral and alkaline conditions (pH 7.0 to 9.0) but had no inhibitory effect on S. aureus, B. subtilis, and E. coli under weakly acidic conditions (pH 6.0). The antibacterial mechanism of monocaprin against gram-positive strains (S. aureus and B. subtilis) resulted from destruction of the cell membrane. In contrast, the antibacterial activity of monocaprin against gram-negative strains (P. aeruginosa and E. coli) was attributed to damage to lipopolysaccharides in the cell walls. Because of its inhibitory effect on both gram-positive and gram-negative bacteria, monocaprin could be used as an antibacterial additive in the food industry. HIGHLIGHTS


2019 ◽  
Vol 65 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Yu.V. Butina ◽  
T.V. Kudayarova ◽  
E.A. Danilova ◽  
M.K. Islyaikin

The work is devoted to predicting and studying biological properties of N-substituted analogs of 3,5-diamino-1,2,4-thiadiazole, which, in their turn, include in the composition of many drugs that exhibit a wide range of pharmacological actions. For searching of new alternative drugs with an antibacterial activity, but lacking resistance of microorganism strains to them, a computer screening of 2N-alkyl-substituted 5-amino-3-imino-1,2,4-thiadiazolines previously synthesized by us was carried out. The prediction of the spectrum of biological activity, as well as the determination of the probable toxicity of these compounds, was performed using the freely available computer programs PASS, Anti-Bac-Pred, and GUSAR. The study of the antibacterial activity in vitro against gram-positive (Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis) and gram-negative (Escherichia coli, Pseudomonas aeruginosae) bacterial strains was performed by the disco-diffusion method. Experimental data roughly correspond to the predictions.


2012 ◽  
Vol 1 (8) ◽  
pp. 217-220 ◽  
Author(s):  
BE Ravi Shankara ◽  
YL Ramachandra ◽  
S Sundara Rajan ◽  
J Preetham ◽  
PS Sujan Ganapathy

The leaf galls of Terminalia chebula is used widely as Karkatasringi in south Indian markets. Karkatashringi is an important crude drug employed in various indigenous systems of medicine against several diseases and the drug has diverse medicinal properties. The present study was carried out to understand the antimicrobial activity of various extracts. The antibacterial activity of T. chebula (leaf gall) was evaluated against ten bacterial strains including Gram-positive and Gram-negative bacteria using the agar-well diffusion method. Among the two extracts tested, the ethanol extract presented the best results against all the bacteria while aqueous extract showed moderate inhibition of the microbial growth. Each extract is unique against different microorganisms; Staphylococcus aureus was more susceptible to both extract among the tested organisms, whereas Serratia marcescens and Proteus mirabilis were less susceptible for ethanol and aqueous extract respectively. The inhibitory effect of the extracts was compared with standard antibiotic Ciprofloxacin.DOI: http://dx.doi.org/10.3329/icpj.v1i8.11254 International Current Pharmaceutical Journal 2012, 1(8): 217-220 


Author(s):  
Youzhou Liu ◽  
Chen Dai ◽  
Yaqiu Zhou ◽  
Junqing Qiao ◽  
Bao Tang ◽  
...  

Pseudomonas chlororaphis YL-1 has extensive antimicrobial activities against phytopathogens, and its genome harbors pyoverdine (PVD) biosynthesis gene cluster. The alternative sigma factor PvdS in Pseudomonas aeruginosa PAO1, acts as a critical regulator in response to iron starvation. The assembly of the PVD backbone starts with peptide synthetase enzyme PvdL. PvdF catalyzes formylation of L-OH-Orn to produce L-N5-hydroxyornithine. Here, we describe the characterization of PVD production in YL-1 and its antimicrobial activity as compared with its PVD-deficient mutants ΔpvdS, ΔpvdF, and ΔpvdL, that were obtained using a sacB-based site-specific mutagenesis strategy. Using in vitro methods, we examined the effect of exogenous iron under low-iron conditions and iron-chelating agent under iron-sufficient conditions on PVD production, antibacterial activity, and the relative expression of PVD transcription factor gene pvdS in YL-1. We found that strain YL-1, mutant ΔpvdF, and complemented strain ΔpvdS(pUCP26-pvdS) produced visible PVDs and demonstrated a wide range of inhibitory effects against Gram-negative and Gram-positive bacteria in vitro under low-iron conditions, and that with the increase of iron its PVD production and antibacterial activity were reduced. The antibacterial compounds produced by strain YL-1 in low-iron conditions were PVDs based on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Moreover, the antibacterial activity observed in vitro was correlated with in vivo control efficacies of strain YL-1 against rice bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Collectively, PVDs are responsible for the antibacterial activities of strain YL-1 under both natural and induced low-iron conditions. IMPORTANCE: The results demonstrated that PVDs are essential for the broad-spectrum antibacterial activities of strain YL-1 against both Gram-positive and Gram-negative bacteria in low-iron conditions. Our findings also highlight the effect of exogenous iron on the production of PVD and the importance of this bacterial product in bacterial interactions. As a biocontrol agent, PVDs can directly inhibit the proliferation of the tested bacteria in addition to participating in iron competition.


Sign in / Sign up

Export Citation Format

Share Document