scholarly journals Investigations into Morphology and Mechanical Properties of Epoxidized Polystyrene/Polybutadiene/Polystyrene (SBS) Triblock Copolymer

2013 ◽  
Vol 28 ◽  
pp. 42-47 ◽  
Author(s):  
Rajesh Pandit ◽  
Boulos Youssef ◽  
Jean Marc Saiter ◽  
Rameshwar Adhikari

An architecturally asymmetric polystyrene-block-polybutadiene-block-polystyrene (SBS) triblock copolymer possessing lamellar morphology was subjected to different degrees of epoxidation with performic acid generated in situ by the reaction between hydrogen peroxide and formic acid. The effect of the chemical modification on morphology and mechanical behaviour of the block copolymer was investigated by means of different techniques such as electron microscopy, Fourier transform Infrared (FTIR) spectroscopy, tensile testing and differential scanning calorimetry (DSC). It was found that the microphase separation behaviour and hence the mechanical properties of the materials can be drastically altered via epoxidation of the diene block of the styrene/diene triblock copolymers. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8057 Journal of Nepal Chemical Society Vol.28, 2011 Page 42-47 Uploaded date: May 7, 2013

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sharmila Pradhan ◽  
Ralf Lach ◽  
Hong Hai Le ◽  
Wolfgang Grellmann ◽  
Hans-Joachim Radusch ◽  
...  

The object of this study has been to investigate the effect of filler dimensionality on morphology and mechanical properties of polymer nanocomposites using various kinds of nanofillers (such as multiwalled carbon nanotubes (1D filler), layered silicate (2D filler), and boehmite (3D filler)) dispersed in the matrix of ethylene-1-octene copolymer (EOC), a polyolefin-based elastomer. The morphological features were studied by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) while mechanical properties were characterized by tensile testing and depth sensitive recording microindentation hardness measurements. It has been demonstrated that the filler dimensionality may have dramatic influence on the mechanical properties of the samples. Based on the results obtained by tensile testing and microhardness measurements, the reinforcing effect of the nanofiller was found to follow the order: 1D filler > 2D filler > 3D filler.


2012 ◽  
Vol 466-467 ◽  
pp. 391-395
Author(s):  
Feng Xia Liu ◽  
Yong Jia Liu ◽  
Hong Li Cai ◽  
Jia Shuang Luan ◽  
Mei Zhang

This paper describes the morphology and mechanical properties of novel electrospun zein based fibrous membranes. From the results, due to adding PVA, it was found that the electrospun fibers of zein can turn into a new strong membrane. The fibrous membranes were characterized by tensile testing, scanning electron microscopy(SEM) and differential scanning calorimetry(DSC). Effect of PVA was analyzed as one of the most significant factors affecting the mechanical characterization of fibrous membranes. The compatibility of zein/PVA nanofibrous were also analyzed by using DSC method.


2013 ◽  
Vol 28 ◽  
pp. 84-88 ◽  
Author(s):  
Santosh Khanal ◽  
Alina Shakya ◽  
Goerg H. Michler ◽  
Boulos Youssef ◽  
Jean M. Saiter ◽  
...  

In this work, a commercially available Styrene-Isoprene-Styrene (SIS)triblock copolymer was modified into epoxidised version (ESIS)using performic acid generated in situ from hydrogen peroxide and formic acid. The epoxidised sample was further acrylated to prepare acrylated version (ASIS). The nanocomposites of each sample (SIS, ESIS and ASIS) were prepared using boehmite nanoparticles as filler by solution casting method. The polymers were characterized by Fourier Transform Infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). TEM investigations revealed that that the epoxidation of the diene block enhanced the dispersion of the nanofiller in the polymer matrix while the segregation of the nanoparticles towards the interface of the immiscible polymers was observed in the acrylated block copolymer based nanocomposite. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8112 Journal of Nepal Chemical Society Vol. 28, 2011 Page: 84-88 Uploaded Date: May 24, 2013


2007 ◽  
Vol 22 (2) ◽  
pp. 326-333 ◽  
Author(s):  
J. Das ◽  
S. Pauly ◽  
C. Duhamel ◽  
B.C. Wei ◽  
J. Eckert

Cu47.5Zr47.5Al5 was prepared by arc melting and solidified in situ by suction casting into 2–5-mm-diameter rods under various cooling rates (200–2000 K/s). The microstructure was investigated along the length of the rods by electron microscopy, differential scanning calorimetry and mechanical properties were investigated under compression. The microstructure of differently prepared specimens consists of macroscopic spherical shape chemically inhomogeneous regions together with a low volume fraction of randomly distributed CuZr B2 phase embedded in a 2–7 nm size clustered “glassy-martensite” matrix. The as-cast specimens show high yield strength (1721 MPa), pronounced work-hardening behavior up to 2116 MPa and large fracture strain up to 12.1–15.1%. The fracture strain decreases with increasing casting diameter. The presence of chemical inhomogenities and nanoscale “glassy-martensite” features are beneficial for improving the inherent ductility of the metallic glass.


2019 ◽  
Vol 10 (8) ◽  
pp. 1725
Author(s):  
Raffaella Aversa ◽  
Relly Victoria Virgil Petrescu ◽  
Antonio Apicella ◽  
Florian Ion Tiberiu Petrescu

A method for PET mechanical properties enhancement by reactive blending with HBA/HNA Liquid Crystalline Polymers for in situ highly fibrillar composites preparation is presented. LCP/PET blends were reactively extruded in presence of Pyromellitic Di-Anhydride (PMDA) and then characterized by Differential Scanning Calorimetry, Thermally Stimulated Currents and tensile mechanical properties. Moderate amounts of LCP in the PET (0.5 and 5%) and small amounts of thermo-active and reactive compatibilizer in the blend (0.3%) were found to significantly improve LCP melt dispersion, melts shear transfer and LCP fibril formation and adhesion. An unexpected improvement was probably due to the presence of two distinct phases’ supra-molecular structures involving PET-LCP and PMDA.


2005 ◽  
Vol 45 (9) ◽  
pp. 1303-1311 ◽  
Author(s):  
Hui Quan ◽  
Gan-Ji Zhong ◽  
Zhong-Ming Li ◽  
Ming-Bo Yang ◽  
Bang-Hu Xie ◽  
...  

Author(s):  
B. A. Samuel ◽  
Bo Yi ◽  
R. Rajagopalan ◽  
H. C. Foley ◽  
M. A. Haque

We present results on the mechanical properties of single freestanding poly-furfuryl alcohol (PFA) nanowires (aspect ratio > 50, diameters 100–300 nm) from experiments conducted using a MEMS-based uniaxial tensile testing device in-situ inside the SEM. The specimens tested were pyrolyzed PFA nanowires (pyrolyzed at 800° C).


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1123 ◽  
Author(s):  
Hui Liang ◽  
Yun Zhao ◽  
Jinjun Yang ◽  
Xiao Li ◽  
Xiaoxian Yang ◽  
...  

The present work focuses on the preparation of poly(l–lactide)–magnesium oxide whiskers (PLLA–MgO) composites by the in-situ polymerization method for bone repair and implant. PLLA–MgO composites were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and solid-state 13C and 1H nuclear magnetic resonance spectroscopy (NMR). It was found that the whiskers were uniformly dispersed in the PLLA matrix through the interfacial interaction bonding between PLLA and MgO; thereby, the MgO whisker was found to be well-distributed in the PLLA matrix, and biocomposites with excellent interface bonding were produced. Notably, the MgO whisker has an effect on the crystallization behavior and mechanical properties; moreover, the in vivo degradation of PLLA–MgO composites could also be adjusted by MgO. These results show that the whisker content of 0.5 wt % and 1.0 wt % exhibited a prominent nucleation effect for the PLLA matrix, and specifically 1.0 wt % MgO was found to benefit the enhanced mechanical properties greatly. In addition, the improvement of the degrading process of the composite illustrated that the MgO whisker can effectively regulate the degradation of the PLLA matrix as well as raise its bioactivity. Hence, these results demonstrated the promising application of PLLA–MgO composite to serve as a biomedical material for bone-related repair.


Sign in / Sign up

Export Citation Format

Share Document