scholarly journals The Kohistan between Gilgit and Chilas, northern Pakistan: regional tectonic implications

1996 ◽  
Vol 14 ◽  
Author(s):  
T. Khan ◽  
M. A. Khan ◽  
M. Q. Jan ◽  
M. Latif

In this paper, we present geological description of an area located between Gilgit and Chilas within the Kohistan terrane. This terrane has been considered an intra-oceanic island arc, formed due to northward subduction of the Neo-tethyan lithospheric plate. At present, it is squeezed between the Karakoram­ Asian and Indian continental plates. Both the contacts are marked by suture zones, that is, Shyok (MKT) in the north and Indus (MMT) sutures in the south, respectively. The investigated area consists of plutonic, metamorphosed volcanic and sedimentary rocks, the Chilas Complex, and the Kamila Amphibolite. The metamorphosed volcanic and sedimentary rocks are packaged into the Jagfot Group. This group comprises basal turbiditic sediments, intercalated with amphibolites and calc-silicates (the Gilgit Formation), followed upward by the Gashu-Confluence Volcanics = Chait Volcanic Group, and finally the Thelichi Formation = Yasin Group of Aptian-Albian age. The Thelichi Formation comprises a volcanic base (Majne volcanics) and overlying turbidites, local intercalation of marbles, volcaniclastics and lava flows. Greenschist and amphibolite facies are common in the Jaglot Group, and particularly the sillimanite in the Gilgit Formation. A pair of anticline (the Gilgit anticline) and syncline (the Jaglot syncline) make up the structural scenario. On the basis of field geology, we conclude that the entire Jaglot Group and its equivalents, the Yasin Group, Chait Volcanic Group in Kohistan, and Burjila Formation, Bauma Harel Formation and Katzarah Formation in Ladakh show intra-oceanic back-arc basin rather than island arc affinities as suggested in the past.

1986 ◽  
Vol 123 (4) ◽  
pp. 405-423 ◽  
Author(s):  
Carol J. Pudsey

AbstractThe Northern Suture is a fault separating the Cretaceous Kohistan island arc terrain (northwest Himalayas) from Palaeozoic sediments of the Asian Plate to the north. The Kohistan arc includes volcanic and sedimentary rocks (andesitic lavas, tuffs, volcaniclastics, slates and limestones), metamorphosed to greenschist facies and intruded by the two-phase Kohistan Batholith. Asian continental margin sediments are mainly of shelf type, are variably metamorphosed and intruded by the Karakoram Batholith. The Northern Suture is a zone of melange from 150 m to 4 km wide, and contains blocks of volcanic greenstone, limestone, red shale, conglomerate, quartzite and serpentinite in a slate matrix. It has a strong planar fabric; but in many places bedding is preserved in blocks and matrix, and depositional rather than tectonic contacts are seen between the two. The melange is inferred to be an olistostrome largely derived from the Kohistan arc, formed in a small back-arc basin between Kohistan and Asia. Limestone blocks in the melange are dated as Aptian–Albian; post-tectonic intrusions yield radiometric ages from 111 to 62 Ma. The Northern Suture therefore probably formed in the early Late Cretaceous during closure of the back-arc basin. The Tethys ocean lay south of Kohistan, where the Main Mantle Thrust represents the westward continuation of the Indus–Tsangpo Suture.


1980 ◽  
Vol 17 (7) ◽  
pp. 888-900 ◽  
Author(s):  
G. A. Jenner ◽  
B. J. Fryer

The Snooks Arm Group of the Newfoundland Appalachians, which includes the Betts Cove ophiolite at its base, has been interpreted as oceanic crust overlain by island arc volcanic and sedimentary rocks. The limited geochemical data available on the upper Snooks Arm Group basalts have been used as evidence for and against their formation in an island arc environment.Reinvestigation of the chemistry of the basaltic rocks of the upper Snooks Arm Group establishes them as large ion lithophile enriched tholeiites. Similar basalts have been found in oceanic islands, on aseismic ridges, and possibly in back-arc basins. Chemically analogous rocks are notably lacking from island arc settings.The geochemistry and geology of the upper Snooks Arm Group suggest that these rocks may have formed in either an oceanic island setting or, as recently suggested by Upadhyay and Neale, as part of a marginal basin. It is not possible to distinguish between these alternate models, although the most similar basaltic rocks occur in the former environment. It is most unlikely that these rocks formed in an early island arc setting and indeed there may be no need for them to be associated with a major subduction zone.


2018 ◽  
Vol 47 (1) ◽  
pp. 23-36
Author(s):  
Boris Valchev ◽  
Dimitar Sachkov ◽  
Sava Juranov

The Paleogene sedimentary rocks in the north-easternmost part of the territory of Bulgaria have been penetrated by numerous boreholes. In terms of regional tectonic zonation, the study area is a part of the onshore sector of the Moesian Platform, which partly includes the South Dobrogea Unit and the easternmost part of the North Bulgarian Dome with its eastern slope. The lithostratigraphy of the Paleogene successions consists of six formal units (the Komarevo, Beloslav, Dikilitash, Aladan, Avren, and Ruslar formations) and one informal unit (glauconitic marker). For compiling an overall conception of the regional aspects (lithology, thickness, spatial distribution, and relationships) of the individual lithostratigraphic units and for illustration of their spatial distribution, a 3D lithostratigraphic model based on reinterpretation of individual borehole sections has been created. The model database was compiled by integration of the original lithological data from 338 borehole sections.


2018 ◽  
Vol 45 (3) ◽  
pp. 301 ◽  
Author(s):  
Francisco Hervé ◽  
Mauricio Calderón ◽  
Mark Fanning ◽  
Robert Pankhurst ◽  
Carlos W. Rapela ◽  
...  

Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.


Ophiolite belts are found in Tibet along the Zangbo, Banggong and Jinsha River Sutures and in the Anyemaqen mountains, the eastern extension of the Kunlun mountains. Where studied, the Zangbo Suture ophiolites are characterized by: apparently thin crustal sequences (3-3.5 k m ); an abundance of sills and dykes throughout the crustal and uppermost mantle sequences; common intraoceanic melanges and unconformities; and an N-MORB petrological and geochemical composition. The ophiolites probably formed within the main neo-Tethyan ocean and the unusual features may be due to proximity to ridge-transform intersections, rather than to genesis at very slow -spreading ridges as the current consensus suggests. The Banggong Suture ophiolites have a supra-subduction zone petrological and geochemical composition — although at least one locality in the Ado Massif shows MORB characteristics. However, it is also apparent that the dykes and lavas show a regional chemical zonation, from boninites and primitive island arc tholeiites in the south of the ophiolite belt, through normal island arc tholeiites in the central belt to island arc tholeiites transitional to N-MORB in the north. The ophiolites could represent fragments of a fore-arc, island arc, back-arc complex developed above a Jurassic, northward-dipping subduction zone and emplaced in several stages during convergence of the Lhasa and Qiangtang terranes. The ophiolites of the Jinsha River Suture have a N-MORB composition where analysed, but more information is needed for a proper characterization. The Anyemaqen ophiolites, where studied, have a within-plate tholeiite composition and may have originated at a passive margin: it is not, however, certain whether true oceanic lithosphere, as opposed to strongly attenuated continental lithosphere, existed in this region.


Author(s):  
J. V. Samoilov

During the last few years I have applied myself to the study of some minerals occurring in the sedimentary rocks of a definite geological horizon. The success of my investigations was greatly favoured by the fact that the mineralogical material was collected during the course of the systematic geological exploration of the phosphate deposits of Russia, which during the past eight years has been under my immediate supervision.The explorations just mentioned were begun in the north-eastern part of European Russia, and several occurrences of barite were found in the first year during the field study of the phosphate deposits in the government of Kostroma.


1986 ◽  
Vol 23 (7) ◽  
pp. 1022-1041 ◽  
Author(s):  
G. E. Ray

The Hozameen Fault of southwestern British Columbia is associated with the Coquihalla serpentine belt and separates two distinct crustal units. Northeast of the fault are greenstones of the Early Triassic (?) Spider Peak Formation, which are unconformably overlain by Jurassic to Cretaceous turbidite and successor basin deposits of the Pasayten Trough. The oldest sedimentary rocks in the trough, the Ladner Group, contain a locally developed basal unit that hosts the Carolin mine gold orebody. Southwest of the fault, the Permian to Jurassic Hozameen Group represents a dismembered ophiolite succession comprising ultramafic rocks of the Petch Creek serpentine belt, overlain in turn by greenstone and chert units. The greenstones in the Hozameen Group and the Spider Peak Formation are geochemically distinguishable; the latter represent sodic, ocean-floor, subalkaline basalts formed in a spreading ridge environment, while the former include both arc tholeiites and oceanic island–seamount subalkaline basalts.Farther west, the major Petch Creek Fault separates the Hozameen Group from the Custer–Skagit Gneiss. This fault is locally associated with the Petch Creek serpentine belt and is considered to be a northern extension of the Ross Lake Fault of Washington State.The rocks in the Hozameen Group, Spider Peak Formation, and Pasayten Trough were probably deposited within a single basin that initiated as an extensive, multirifted, marginal back-arc basin and eventually evolved into the steadily narrowing Pasayten Trough.Following Early to Middle Cretaceous closure of the Pasayten Trough, oblique, easterly-directed movement along westerly-dipping thrusts caused the Custer–Skagit Gneiss to override the Hozameen Group, which in turn overrode rocks of the Pasayten Trough farther east; these boundary thrusts formed precursor structures for the Hozameen and Petch Creek faults. Ultramafic basement material underlying the Spider Peak Formation and the Hozameen Group was thrust up the bounding fractures, producing the Coquihalla and Petch Creek serpentine belts, respectively.Large-scale dextral transcurrent displacement, possibly related to movement along the Fraser Fault system, occurred subsequently along the Petch Creek and Hozameen faults. This wrench movement was preceded by the Mid-Eocene (?) intrusion of the Needle Peak pluton and was followed by emplacement of the 16–35 Ma Chilliwack batholith.


2013 ◽  
Vol 53 (2) ◽  
pp. 487 ◽  
Author(s):  
Tegan Smith ◽  
Andrew P Kelman ◽  
Robert Nicoll ◽  
Dianne Edwards ◽  
Lisa Hall ◽  
...  

The Georgina Basin is a Neoproterozoic to Lower Devonian sedimentary basin covering 325,000 km2 of western Queensland and the NT. It is a northwest-southeast-trending extensional basin, with prospective conventional and unconventional hydrocarbon targets in Cambrian and Ordovician carbonate and siliciclastic rock units. The unconventional gas and oil potential of the basin has led to recent exploration interest, although the basin has been relatively less explored in the past. At the southern end of the basin, depocentres contain up to 2.2 km of Cambrian to Devonian sedimentary rocks, overlying Neoproterozoic sedimentary rocks more than 1.5 km thick. The basin succession thins toward the north, where Cambrian sediments overlie the McArthur Basin sediments in the Beetaloo Sub-basin. Biostratigraphic interpretations of the prospective southern, central and eastern regions of the basin have been revised to reflect the 2012 Geological Time Scale (Gradstein, Ogg, Schmitz, and Ogg, 2012), resulting in an updated chronostratigraphic framework for the basin. The revised biostratigraphic interpretations have implications for important hydrocarbon source rocks. For example, the limestone unit in the southern parts of the basin, generally regarded as the Thorntonia Limestone, is of a different age to the type section for this unit, located in the Undilla Sub-basin. Additionally, the basal hot shale of the Arthur Creek Formation is diachronous across the Dulcie and Toko synclines, which may have ramifications for hydrocarbon exploration. This revised chronostratigraphic framework (by Geoscience Australia) for the Georgina Basin provides a baseline for the first basin-wide assessment of the unconventional hydrocarbon potential of the basin.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yoshimitsu Suda ◽  
Yasutaka Hayasaka ◽  
Kosuke Kimura

The Yakuno ophiolite in southwest Japan is considered to have been obducted by the collision between an intra-oceanic island-arc-back-arc basin (intra-OIA-BAB) system and the East Asian continent during the late Paleozoic. New SIMS (SHRIMP) zircon U-Pb determinations for amphibolite and metagabbro of BAB origin within the Yakuno ophiolite yield ages of 293.4 ± 9.5 Ma and 288 ± 13 Ma, respectively. These ages are slightly older (however, overlapping within analytical errors) than the magmatic age of arc granitoids (ca. 285–282 Ma) that intruded into the mafic rocks of BAB origin. Results from geochronological and geochemical data of the Yakuno ophiolite give rise to the following tentative geotectonic model for the Paleozoic intra-OIA-BAB system: the initial stage of BAB rifting (ca. 293–288 Ma) formed the BAB crust with island-arc basalt (IAB) signatures, which was brought to the OIA setting, and generated the arc granitoids (ca. 285–282 Ma) by anatexis of the BAB crust. A later stage of BAB rifting (<ca. 285 Ma) formed the BAB crust with IAB to MORB signatures, on which the Permian sediments were conformably deposited. These components collided with the eastern margin of the East Asian continent during the early Mesozoic.


Sign in / Sign up

Export Citation Format

Share Document