scholarly journals Lithological controls on hydrogeochemical parameters: a case study from parts of Vaigai River basin, Madurai, India

1998 ◽  
Vol 17 ◽  
Author(s):  
K. K. Sharma ◽  
S. Jayashree

Water being a universal solvent carries minerals in solution which though present in small quantities determine its suitability for various purposes. The suitability of a well is determined more by the quality of water and not by the quantity of water which it can yield. Geochemical studies provide complete know ledge of the water resources of a hydrological region. The influence of mineralogical composition upon the filtering properties and the water quality can be analysed form the point of view of the mineral properties. Quality of ground water varies from place to place and from stratum to stratum, it also varies from season to season. There are various techniques to analyse the groundwater quality. However, not much work has been carried out to study the variations in water quality as a result of 1ithological and structural controls. In the present paper, an attempt has been made in this direction. It is found that the first step for any groundwater quality data analysis should be its correlation with the lithological variations. This paper presents the details of the work carried out in the Vaigai River basin of Tamilnadu.

2013 ◽  
Vol 17 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Caterina Scaramelli

This paper takes water quality as an ethnographic subject. It looks at how water quality monitors in Boston make sense of the quality of water through mundane engagement with three non-human beings who they encounter during their monitoring activities: herring, bacteria and water lily. Each of these organisms suggests a different understanding of water quality for the monitors and poses a dilemma. Water quality monitors who contribute to the production of water quality data come to know water quality as through direct interactions with these beings, mediated by both sensorial experience and laboratory data. These experiences, at the same time, confuse and redraw relationships between science, water flows, non-human vitality, including that of invasive species, and people.


Author(s):  
Petra Nováková

The aim of the work was to elaborate and evaluate the water quality of water reservoir Vranov nad Dyjí. Fresh water was sampled in five different locations of the reservoir (three important tributaries, dam and water captation locality). Ten, the most essential water quality indicators were selected. From the point of view of water quality indicators complexity the most integrated samples were taken in the water captation locality (period 1984 – 2002). At other locations, there were missing dates from the eightieth, but their volume was sufficient for statistical processing.Correlation analyses for the individual locations and dimensions were done as so as determination coefficients for all localities during the time period of 1994 – 2002. The results demonstrate very good allocation of the water captation from the point of view of the water flow.Multiples and factor analysis was done for the period of 1984 – 2002 in the locality Jelení zátoka where the object of water captation is situated. The results of the analysis are nine factors, which influence the water quality of the reservoir. From the point of view of the importance three factors were interpreted.The analyses and results are part of my Ph.D. thesis. The results will be used for other evaluations of the water quality in the reservoir and tributaries, for activities in the catchment’s area and for proposal processing other zones of second level of protected areas.


2021 ◽  
Vol 30 (3) ◽  
pp. 546-561
Author(s):  
K. Mohammed Rizwan ◽  
V. Thirukumaran ◽  
M. Suresh

The aims of the current research are to assess the drinking water quality of the groundwater in the Gadilam River Basin, which is located in the northern part of Tamil Nadu, by identifying the groundwater quality index and examine its suitability for drinking. The current work determines the levels of groundwater quality parameters based on 120 groundwater samples; 50 samples from Archaean formation, 34 samples from Quaternary formation, 35 samples from Tertiary formation and the remaining sample from Cretaceous formation. Additionally, this research compares the determined levels with the various standards for drinking. Furthermore, the variability of parameters of the groundwater quality is explored in this paper by using the spatial interpolation method. The conclusion of this research reveals that the groundwater quality parameters such as Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO32-), Fluoride (F-), Sulphate (SO42-), Bi-carbonate (HCO3-) and Percentage of Hydrogen (pH) values are observed to be within the limiting value for WHO 2017 in all the formations during the seasons in which they were taken. The water quality index (WQI) values of the Archaean, Quaternary and Tertiary formations are found to be less than 100 meq/L in all stations in both seasons. In order of WQI, these stations come under the category of “Excellent” and “Good”. The Piper trilinear classification of groundwater samples fall in the field of mixed Ca-Mg-Cl, and No dominance, some of the samples represent Na-K, Cl types of water.


2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Samuel Anim Ofosu ◽  
Kwaku A. Adjei ◽  
Samuel Nii Odai

AbstractThe natural resources, especially water in the Densu river basin, play significant roles in the socio-economic development of Ghana. The purpose of this study was to analyse the water quality of the Densu river using water quality index (WQI) and multivariate techniques. In this study, physico-chemical and bacteriological parameters were measured from surface water samples taken from eight (8) sampling stations in the study area. water quality index and multivariate techniques such as hierarchical cluster analysis and principal component analysis were utilized in the analysis of surface water quality data. The results indicated that the average WQI of the Densu river for the two sampling periods was sixty-one (61) which is classified as Medium, based on the Solway WQI index. The pH levels of all the samples were within allowable limits of World Health Organization (WHO) guidelines. All the sampling stations for the two seasonal periods had bacteriological parameters higher than WHO guidelines, making the samples unsuitable for most domestic uses. The study revealed that six (6) principal components accounted for about 97% of the total variance of dataset and three (3) spatial clusters were classified. This research has provided the basis for applying both WQI and multivariate techniques in analysing and classifying water quality in a river basin.


2021 ◽  
Vol 7 (9) ◽  
pp. 1515-1528
Author(s):  
Hazir S. Çadraku

Groundwater is an important source for a drink and irrigation in the Blinaja river basin. Understanding knowledge of irrigation water quality is critical to the management of water for long-term productivity. Historically for this study area there is no data and information regarding the quality and use of water for irrigation needs. Therefore, there was a need to assess water quality based on data analysed from eight sampling points. The purpose of this paper is to evaluate, relying on analytical results, the quality of groundwater in the Blinaja river basin for the purpose of its use for irrigation of agricultural crops. For this purpose, in the Blinaja River Basin in different months during 2015, 2016, 2018 and 2019, 28 water samples were taken to assess the quality of groundwater for irrigation. Water samples were analysed in a laboratory for some of the key quality indicators; pH, EC, hardness (TH), Ca, Mg, Na, K, HCO3, SO4, Cl, etc. and then irrigation water quality indices were calculated such as: percentage of Na (% Na), SAR (Sodium Adsorption Ratio), PI (Permeability index), KR (Kelly's ratio), etc. The overall objective of this study was to assess the quality of water to be used by the inhabitants of the area for irrigation of agricultural crops. Analytical procedures for the laboratory determinations of water quality have been given in several publications (USDA Handbook 60 by Richards, 1954; FAO Soils Bulletin 10 by Dewis and Freitas1970; APHA 2005). Doi: 10.28991/cej-2021-03091740 Full Text: PDF


Author(s):  
Khalid Mahmood ◽  
Muhammad Asim

A comprehensive study for the spatial distribution of drinking water quality had been conductedfor residential area of Lahore, Pakistan. The study had made use of the geographic information system(GIS) for geographical representation and spatial analysis of groundwater quality. Physicochemicalparameters including electric conductivity, pH, TDS, Cl, Mg, Ca, alkalinity and bicarbonates from 73 ofthe water samples had been included in the analysis. Water quality data had been geo-referenced followedby its interpolation using inverse distance weighted (IDW) for each of the parameters. Very high alkalinityand bicarbonates values were observed in most parts of the area. For the comprehensive view, water qualityindex map had been prepared using weighted overlay analysis (WOA). The water quality index map wasclassified into five zones of excellent, good, poor, very poor and unfit for drinking as per WHO standardsof drinking water. 21% region had excellent quality of the underground water and 50% was found goodfor drinking. Poor quality of water was found in southeastern part, covering 27% of the study area. Only2% of the area was found under the very poor and unfit water quality conditions for drinking.


2018 ◽  
Vol 73 ◽  
pp. 04013
Author(s):  
Deddy Caesar Agusto ◽  
Eko Kusratmoko

The river is the main source of water in Indonesia, which at the moment, this quality tends to get worse and is no longer worth consuming for various needs. The cause of the pollution is the entry of pollutants both point source (industrial waste) and non-point source (residential and agricultural land). Rainfall can be a non-point source pollutant agent from a watershed to a water body. The impact of rainfall on increasing concentrations of pollutants is very significant, especially the high intensity rainfall that falls after the long dry season. In this study, water quality data is obtained from river outlets located in Damkamun taken every 30 minutes during the rainfall event so that fluctuation in water quality can be seen. Water quality indicators studied in this research are TDS, DHLNitrate, Phosphate and Ph. The author, in analyzing, using rainfall Himawari 8 which is obtained every 10 minutes. The result shows that rainfall is directly related to the water flow and the fluctuation of the discharge affects the water quality. From the calculations, the chemical quality of water is also influenced by the use of land in the watershed. Nitrate value increases when the occurrence of rain occurs in land use while phosphate experiences a high value during the event.


1986 ◽  
Vol 18 (4-5) ◽  
pp. 43-52 ◽  
Author(s):  
Tetsuya Kusuda ◽  
Tohru Futawatari ◽  
Youichi Awaya ◽  
Kenichi Koga ◽  
Katsuhiro Furumoto

The objectives of this study were to clarify the defects of the current tidal river monitoring method and to propose a better method to obtain water quality data of high quality for tidal rivers. In Japan, the Water Quality Standards for rivers also apply to tidal rivers. The method indicates that water should be sampled from 20% of the water depth below the water surface at an arbitrary time once a month. Since this method was apparently inappropriate to understand the dynamics and water profiles in tidal rivers, field surveys were conducted at different times in the River Rokkaku, which is well mixed. The results showed that the turbidity maximum moved up- and down-stream more than 10 km due to the tide. Based on this fact, a new monitoring method was proposed, which required water samples to be taken with a certain time lag from a high tide at a station. This newly proposed method improved the quality of information on water quality and made data available to ascertain long term trends. Modifications to the new method are suggested to further improve the quality of water quality data for tidal rivers.


Author(s):  
Hazimah Haspi Harun ◽  
Mohamad Roslan Mohamad Kasim ◽  
Siti Nurhidayu ◽  
Zulfa Hanan Ash’aari ◽  
Faradiella Mohd Kusin ◽  
...  

The aim of this study was to propose a groundwater quality index (GWQI) that presents water quality data as a single number and represents the water quality level. The development of the GWQI in agricultural areas is vital as the groundwater considered as an alternative water source for domestic purposes. The insufficiency of the groundwater quality standard in Malaysia revealed the importance of the GWQI development in determining the quality of groundwater. Groundwater samples were collected from thirteen groundwater wells in the Northern Kuala Langat and the Southern Kuala Langat regions from February 2018 to January 2019. Thirty-four parameters that embodied physicochemical characteristics, aggregate indicator, major ions, and trace elements were considered in the development of the GWQI. Multivariate analysis has been used to finalize the important parameters by using principal component analysis (PCA). Notably, seven parameters—electrical conductivity, chemical oxygen demand (COD), magnesium, calcium, potassium, sodium, and chloride were chosen to evaluate the quality of groundwater. The GWQI was then verified by comparing the groundwater quality in Kota Bharu, Kelantan. A sensitivity analysis was performed on this index to verify its reliability. The sensitivity GWQI has been analyzed and showed high sensitivity to any changes of the pollutant parameters. The development of GWQI should be beneficial to the public, practitioners, and industries. From another angle, this index can help to detect any form of pollution which ultimately could be minimized by controlling the sources of pollutants.


Sign in / Sign up

Export Citation Format

Share Document