scholarly journals Association of Physicochemical Characteristics, Aggregate Indices, Major Ions, and Trace Elements in Developing Groundwater Quality Index (GWQI) in Agricultural Area

Author(s):  
Hazimah Haspi Harun ◽  
Mohamad Roslan Mohamad Kasim ◽  
Siti Nurhidayu ◽  
Zulfa Hanan Ash’aari ◽  
Faradiella Mohd Kusin ◽  
...  

The aim of this study was to propose a groundwater quality index (GWQI) that presents water quality data as a single number and represents the water quality level. The development of the GWQI in agricultural areas is vital as the groundwater considered as an alternative water source for domestic purposes. The insufficiency of the groundwater quality standard in Malaysia revealed the importance of the GWQI development in determining the quality of groundwater. Groundwater samples were collected from thirteen groundwater wells in the Northern Kuala Langat and the Southern Kuala Langat regions from February 2018 to January 2019. Thirty-four parameters that embodied physicochemical characteristics, aggregate indicator, major ions, and trace elements were considered in the development of the GWQI. Multivariate analysis has been used to finalize the important parameters by using principal component analysis (PCA). Notably, seven parameters—electrical conductivity, chemical oxygen demand (COD), magnesium, calcium, potassium, sodium, and chloride were chosen to evaluate the quality of groundwater. The GWQI was then verified by comparing the groundwater quality in Kota Bharu, Kelantan. A sensitivity analysis was performed on this index to verify its reliability. The sensitivity GWQI has been analyzed and showed high sensitivity to any changes of the pollutant parameters. The development of GWQI should be beneficial to the public, practitioners, and industries. From another angle, this index can help to detect any form of pollution which ultimately could be minimized by controlling the sources of pollutants.

Author(s):  
S. I. Ehiorobo ◽  
A. E. Ogbeibu

The water quality of the Okomu Wetland was evaluated using the Water Quality Index (WQI) technique which provides a number that expresses overall water quality of a water body or water sample at a particular time. Sampling of physicochemical parameters spanned two years covering the wet and dry seasons and the water quality data were obtained from 10 sampling locations; Ponds 36, 52, 54, 61, 64, 90, 94, Arhakhuan Stream, Okomu River (Agekpukpu) and Okomu River (Iron bridge) all within the Okomu National Park. Parameters such as Total Dissolved Solids (TDS), Turbidity, pH, Electrical conductivity (EC), Chlorine (Cl), Nitrate (NO3), Sulphate (SO4), Sodium (Na), Magnesium (Mg), (Iron) Fe, Chromium (Cr), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb), and Nikel (Ni) were used to compute WQI and the values obtained for the wetland ranged between 34.36 and 167.28. The Index shows that pond 36, 52 and 54 are unfit for drinking with values between 103.86 and 167.28; ponds 61 and 64 are of the very poor quality category with WQI values of 95.19 and 92.44 respectively, Pond 90, pond 94, Arhakhuan Stream and Okomu River (Agekpukpu) are of poor quality and WQI values between and 53.58 and 73.15. Whereas, the Okomu River (Iron bridge) is within the good water quality (34.36) category. The Okomu River by Iron bridge is of good quality rating while other sampled points were of poor, very poor or unfit for drinking though these water bodies are mostly free from anthropogenic activities because of the conservative status of the study area. A major source of pollution within the wetland is surface runoff. The water quality of the wetland may not be suitable for man’s consumption especially pond water which are majorly impacted by runoff, yet very important for the survival and sustenance of the forest animals and plants. The water quality index (WQI) interprets physicochemical characteristics of water by providing a value which expresses the overall water quality and thus, reveals possible pollution problems of a water body. It turns complex water quality data into information that is easily understandable and usable by scientists, researchers and the general public.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Barbosa Filho ◽  
Iara Brandão de Oliveira

AbstractThis work elaborated a groundwater quality index—GWQI, for the aquifers of the state of Bahia, Brazil, using multivariable analyses. Data from 600 wells located in the four hydrogeological domains: sedimentary, crystalline, karstic, and metasedimentary, were subjected to exploratory statistical analysis, and 22 out of 26 parameters were subjected to multivariable analysis using Statistica (Version 7.0). From the PCA, 5 factors were sufficient to participate in the index, due to sufficient explanation of the cumulative variance. The matrix of factorial loads (for 1–5 factors) indicated 9 parameters related to water quality and 4 hydrological, with factor loads above ± 0.50, to be part of the hierarchical cluster analysis. The dendrogram allowed to choose the 5 parameters related to groundwater quality, to participate in the GWQI (hardness, total residue, sulphate, fluoride and iron). From the multivariable analyses, three parameters from a previous index—NGWQI, were not selected for the GWQI: chloride (belongs to the hardness hierarchical group); pH (insignificant factor load); and nitrate (significant factor load only for 6 factors), also, not a regionalized variable. From the set of communality values (5 factors), the degree of relevance of each parameter was extracted. Based on these values, were determined the relative weights (wi) for the parameters. Using similar WQI-NSF formulation, a product of quality grades raised to a power, which is the weight of importance of each variable, the GWQI values were calculated. Spatialization of 1369 GWQI values, with the respective colors, on the map of the state of Bahia, revealed good correlation between the groundwater quality and the index quality classification. According to the literature on water quality indexing, the GWQI developed here, using emerging technologies, is a mathematical tool developed as specific index, as it was derived using limits for drinking water. This new index was tailored to represent the quality of the groundwater of the four hydrogeological domains of the state of Bahia. Although it has a regionalized application, its development, using, factor analysis, principal component analysis, and hierarchical cluster analysis, participates of the new trend for WQI development, which uses rational, rather than subjective assessment. The GWQI is a successful index due to its ability to represent the groundwater quality of the state of Bahia, using a single mathematical formulation, the same five parameters, and unique weight for each parameter.


2020 ◽  
Vol 49 (2) ◽  
pp. 25-38
Author(s):  
Tanya Vasileva

The study focuses on the quality of shallow groundwater in Bulgaria based on the content of major ions. To be safe for drinking purposes, their concentrations must not exceed the respective thresholds. The groundwater quality is assessed in terms of health hazard by a groundwater quality index (GWQI or WQI), and the respective map is presented. The results show that for the territory of Bulgaria, this index varies from 13 to 92. The highest values of this index (related to health hazard) are typical for the lower hypsometric zone of the country. The shallow groundwater in the zone of active water exchange is distributed as follows: waters of excellent quality, waters of good quality, waters of poor quality, and waters of very poor quality, covering 3%, 39%, 22%, and 31% of the whole area of the country, respectively. In this study, no estimates have been made for 5% of the territory of Bulgaria, which is characterized by the presence of very hard groundwater.


2021 ◽  
Vol 241 ◽  
pp. 01005
Author(s):  
Naseraldin Kayemah ◽  
Rami Al-Ruzouq ◽  
Abdallah Shanableh ◽  
Abdullah Gokhan Yilmaz

The rapid growth in the world population resulted in an increase of the freshwater needs in many sectors. Groundwater is the most important freshwater source specially for arid and semi-arid regions due to lack of surface water sources and low precipitation rates in those regions. In this study, monthly groundwater quality data were collected from eleven well fields in Sharjah over the period of 2004-2017. Water quality parameters including bicarbonate, calcium, chloride, fluoride, magnesium, sodium and sulphate were selected for the analysis. In the study, water quality index (WQI) process is used to develop groundwater quality index (GWQI) for Sharjah using above mentioned water quality parameters. Mann-Kendall and Spearman’s Rho tests were adopted as non-parametric trend tests for temporal (trend) analysis of GWQI, whereas inverse distance weighting interpolation was used in GWQI spatial trend analysis. Temporal trend analysis results showed significant trends in 8 out of 11 well fields. Spatial analysis showed the highest values for salinity ions in the well fields closest to the northern region, whereas the lowest values were detected in the southern region.


2020 ◽  
Vol 29 (2) ◽  
pp. 155-171
Author(s):  
Sarah Ahmed ◽  
Ali Abedulwahab ◽  
Rehab Ahmed ◽  
Mohamed Najemalden ◽  
Omer Taha

Rivers are considered the most important sources of surface water on Earth. They are play a significant role in all human activities and the quality of river water is needed. Therefore, the importance of the water quality index is arising through providing data base about quality of the water source, and explain the change in the water quality over a period of time continually. This study involved determination of physicochemical and biological parameters of Lower Zab river in Kirkuk city at two different points. The objectives of the study are to assess the present water quality, through analysis of some selected water quality parameters like pH, TDS, BOD, dissolved oxygen, turbidity, EC, alkalinity, and salinity etc. and to compare the results with the Canadian Council of Ministers of the Environment and National Sanitation Foundation Water Quality Indices. Raw water samples were collected from the Lower Zab river twice a month by one sample every 15 days from each station. The water quality data include 16 different parameters. Tests were carried out following the American Public Health Association standard methods. The results show that all parameters values were within the standards of drinking water proposed by the CCME standards and Iraqi standards or the World Health Organization standards for drinking purpose, except turbidity, DO, nitrate, calcium, which were mostly higher than the standards and sometimes BOD and potassium. The results of WQI showed that the water quality at LZ3 station is lower than LZ2 station due to the polluting activity of the Lower Zab river. Furthermore, for the years 2014, 2015, and 2016, the water quality was degraded due to the ISIS war. Also, it was noted in the 2013 year that the water quality degraded more in fall and winter seasons due to that the earth has exposed to the long-dried season and then suddenly exposed to a high rainfall season which in turns leads to increase some parameters very high (i.e. turbidity). Finally, the Lower Zab river water cannot be use for drinking directly. However, a pretreatment is needed before the drinking use.


2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


2013 ◽  
Vol 17 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Caterina Scaramelli

This paper takes water quality as an ethnographic subject. It looks at how water quality monitors in Boston make sense of the quality of water through mundane engagement with three non-human beings who they encounter during their monitoring activities: herring, bacteria and water lily. Each of these organisms suggests a different understanding of water quality for the monitors and poses a dilemma. Water quality monitors who contribute to the production of water quality data come to know water quality as through direct interactions with these beings, mediated by both sensorial experience and laboratory data. These experiences, at the same time, confuse and redraw relationships between science, water flows, non-human vitality, including that of invasive species, and people.


2003 ◽  
Vol 7 (5) ◽  
pp. 722-743 ◽  
Author(s):  
H. P. Jarvie ◽  
C. Neal ◽  
P. J. A. Withers ◽  
A. Robinson ◽  
N. Salter

Abstract. Water quality data, collected by the Environment Agency in England and Wales over 10 years (1991 – 2000) were used to examine the spatial distribution of nutrient pollution risk and for assessing broad-scale spatial and temporal variability in nutrient fluxes across the Wye catchment. Nutrient water quality across the upper and middle Wye catchment, and along the main River Wye, is generally very good. However, the main areas of concern lie in the small tributaries in the south and east of the catchment, which have lower dilution capacity and high agricultural and effluent inputs, and where mean Total Reactive Phosphorus (TRP) in some cases exceed 1 mg-P l-1. Indeed, mass load calculations have demonstrated that the lowland south and east portion of the catchment contributes more than 85% of the whole-catchment TRP and more than 78% of nitrate (NO3‾) loads. Ratios of NO3‾:Ca were used to fingerprint different water-types across the catchment, linked to weathering and agricultural activity. The Wye catchment has been subject to two major sets of perturbations during the study period: (i) climatic fluctuations, with a drought during 1995-6, followed by a subsequent drought-break in 1997/8, and extreme high river flows in the autumn/winter of 2000/2001, and (ii) introduction of tertiary P-treatment at major sewage treatment works in the catchment. The implications of these perturbations for the nutrient water quality of the Wye catchment are discussed. Recommendations are made for more targeted monitoring to directly assess diffuse source nutrient contributions. Keywords: nutrients, phosphate, phosphorus, nitrate, nitrogen, river, Wye, PSYCHIC, Defra


2015 ◽  
Vol 15 (4) ◽  
pp. 784-792 ◽  
Author(s):  
Nastaran Khodabakhshi ◽  
Gholamreza Asadollahfardi ◽  
Nima Heidarzadeh

Pollution control and removal of pollutants from groundwater are a challenging and expensive task. The aims of this paper are to determine the aquifer vulnerability of Sefid-Dasht, in Chaharmahal and Bakhtiari province, Iran, using the DRASTIC model. In addition, the groundwater quality index (GQI) technique was applied to assess the groundwater quality and study the spatial variability of major ion concentrations using a geographic information system (GIS). The vulnerability index ranged from 65 to 132, classified into two classes: low and moderate vulnerability. In the southern part of the aquifer, the vulnerability was moderate. Furthermore, the results indicate that the magnitude of the GQI index varies from 92% to 95%. This means the water has a suitable quality. However, from the north to the south and southwest of the aquifer, the water quality has been deteriorating, and the highest concentration of major ions was found in the southwest of the Sefid-Dasht aquifer. A comparison of the vulnerability maps with the GQI index map indicated a poor relation between them. In the DRASTIC method, movement of groundwater is not considered and may be the reason for such inconsistency. However, the movement of groundwater can transport contaminants.


Author(s):  
Nguyen Hai Au ◽  
Tran Minh Bao ◽  
Pham Thi Tuyet Nhi ◽  
Tat Hong Minh Vy ◽  
Truong Tan Hien ◽  
...  

Groundwater in Phu My town is exploited essentially in Pleistocene aquifer and, used for many purposes like irrigation, domestic, production and animal husbandry. In this study, Groundwater Quality Index (EWQI) is calculated with Entropy weight method to determine the suitability of groundwater quality in study area. This method demonstrates the objectivity of each parameter calculated based on the degree of variability of each value and depends on the sample data source. The groundwater samples were collected from 17 wells in dry and wet seasons in 2017 with ten water quality parameters (pH, TDS, TH, Cl-, F-, NH4+-N, NO3--N, SO42-, Pb và Fe2+) were selected for analysising. The analysis results indicate groundwater quality is divided into 4 categories in this study area. In particular, over 70% of wells are "very good" water quality in both dry and wet seasons. Only 6% of wells are " water unsuitable for drinking purpose" of the total number of mornitoring wells in the study area.


Sign in / Sign up

Export Citation Format

Share Document