scholarly journals A Review on the Mechanism of Reservoir-Induced Seismicity for Nepalese Context

2020 ◽  
Vol 19 (1) ◽  
pp. 215-221
Author(s):  
Umesh Raj Joshi ◽  
Ramesh Kumar Maskey ◽  
Kumud Raj Kafle

 Over 90 cases of Reservoir Induced Seismicity have been recorded around the earth. The magnitude was varying from 3.0 to 6.3 on the Richter scale. A Reservoir Induced Seismicity (RIS) can increase the frequency of earthquakes in seismically active zones and cause a shock in seismically inactive zones. Nepal is situated in a seismically active zone with six large earthquakes of magnitude equal to or greater than 7.6. It increases the risk of RIS, while several storage-type hydropower projects are being proposed in Nepal. Seismic activities recorded around the Kulekhani-I reservoir could be a reservoir induced seismicity. However, consistent data of seismic events and reservoir levels during all phases of filling or drawing of water level is missing. This paper reviews the researches on seismic activities caused by reservoirs or tectonic movements, and the need for the study on the mechanism of RIS for the Nepalese context is identified.

Author(s):  
AV Klyuchevskii ◽  
G Bayart ◽  
VM Demjanovich ◽  
T Dungarmaa

Much of the territory of Mongolia is located in highly seismic areas of Central- Asian seismic belt and is subjected to frequent and large earthquakes. Its western half is particularly seismically dangerous. Only in twentieth century more than 60 earthquakes with M>5.5 (7 to 11-12 - intensity) occurred here, among which tens of earthquakes were responsible for severe destruction of the earth surface, and seismic disasters of 1905, 1931 and 1957 were accompanied by seismotectonic deformations to several hundred kilometers in length. Judging from the retained traces of ancient earthquakes and the chronicles, similar and probably larger seismic events occurred here in the recent past.DOI: http://dx.doi.org/10.5564/pmas.v0i4.39Proceedings of the Mongolian Academy of Sciences 2007 No 4 pp.36-49


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Christina Oikonomou ◽  
Haris Haralambous ◽  
Sergey Pulinets ◽  
Aakriti Khadka ◽  
Shukra R. Paudel ◽  
...  

The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events.


1988 ◽  
Vol 128 ◽  
pp. 399-404 ◽  
Author(s):  
Richard S. Gross

The effect on the Earth Rotation Parameters (ERP) of all the large earthquakes that occurred during 1977–1985 is evaluated. It is found that they cannot have caused the variations observed in the ERP during this time period.


Author(s):  
Marcelo Assumpção ◽  
Vasile Marza ◽  
Lucas Barros ◽  
Cristiano Chimpliganond ◽  
José Eduardo Soares ◽  
...  

2021 ◽  
Author(s):  
Kelly H. Oh ◽  
Mia Krout ◽  
Janet E. Richmond ◽  
Hongkyun Kim

AbstractPresynaptic active zone proteins couple calcium influx with synaptic vesicle exocytosis. However, the control of presynaptic calcium channel clustering by active zone proteins is not completely understood. In a C. elegans forward genetic screen, we find that UNC-10/RIM (Rab3-interacting molecule) and SYD-2/Liprin-α regulate presynaptic clustering of UNC-2, the CaV2 channel ortholog. We further quantitatively analyzed live animals using endogenously GFP-tagged UNC-2 and active zone components. Consistent with the interaction between RIM and CaV2 in mammals, the intensity and number of UNC-2 channel clusters at presynaptic terminals were greatly reduced in unc-10 mutant animals. To understand how SYD-2 regulates presynaptic UNC-2 channel clustering, we analyzed presynaptic localization of endogenous SYD-2, UNC-10, RIMB-1/RIM-BP (RIM binding protein), and ELKS-1. Our analysis revealed that while SYD-2 is the most critical for active zone assembly, loss of SYD-2 function does not completely abolish presynaptic localization of UNC-10, RIMB-1, and ELKS-1, suggesting an existence of SYD-2-independent active zone assembly. UNC-2 localization analysis in double and triple mutants of active zone components show that SYD-2 promotes UNC-2 clustering by partially controlling UNC-10 localization, and ELKS-1 and RIMB-1 also contribute to UNC-2 channel clustering. In addition, we find that core active zone proteins are unequal in their abundance. While the abundance of UNC-10 at the active zone is comparable to UNC-2, SYD-2 and ELKS-1 are twice more and RIMB-1 four times more abundant than UNC-2. Together our data show that UNC-10, SYD-2, RIMB-1, and ELKS-1 control presynaptic UNC-2 channel clustering in redundant yet distinct manners.Significance StatementPrecise control of neurotransmission is dependent on the tight coupling of the calcium influx through voltage-gated calcium channels (VGCCs) to the exocytosis machinery at the presynaptic active zones. However, how these VGCCs are tethered to the active zone is incompletely understood. To understand the mechanism of presynaptic VGCC localization, we performed a C. elegans forward genetic screen and quantitatively analyzed endogenous active zones and presynaptic VGCCs. In addition to RIM (Rab3-interacting molecule), our study finds that SYD-2/Liprin-α is critical for presynaptic localization of VGCCs. Yet, the loss of SYD-2, the master active zone scaffolding protein, does not completely abolish the presynaptic localization of the VGCC, showing that the active zone is a resilient structure assembled by redundant mechanisms.


2012 ◽  
Vol 19 (1-2) ◽  
Author(s):  
Josef Havíř ◽  
Jana Pazdírková ◽  
Zdeňka Sýkorová

On January 6, 2012, a moderate earthquake was observed in a region SE of Poznań (local magnitude ML = 3.6 according to Institute of Physics of the Earth, IPE). In this region, there haven‘t been known any historical earthquakes so far, and no natural seismic activity has been observed up to present. Similar rare occurrences of weak and moderate earthquakes were observed in a region near Kaliningrad in 2004 (sequence of events, local magnitude of strongest event being 5.0) and in south Moravia region near Znojmo in 2000 (local magnitude ML = 2.5). These facts show that even in seismically quiet regions occurence of weak to moderate seismic events (with value of magnitude ranging from 3 to 5) could be expected.


1988 ◽  
Vol 78 (6) ◽  
pp. 2025-2040
Author(s):  
D.W. Simpson ◽  
W.S. Leith ◽  
C.H. Scholz

Abstract The temporal distribution of induced seismicity following the filling of large reservoirs shows two types of response. At some reservoirs, seismicity begins almost immediately following the first filling of the reservoir. At others, pronounced increases in seismicity are not observed until a number of seasonal filling cycles have passed. These differences in response may correspond to two fundamental mechanisms by which a reservoir can modify the strength of the crust—one related to rapid increases in elastic stress due to the load of the reservoir and the other to the more gradual diffusion of water from the reservoir to hypocentral depths. Decreased strength can arise from changes in either elastic stress (decreased normal stress or increased shear stress) or from decreased effective normal stress due to increased pore pressure. Pore pressure at hypocentral depths can rise rapidly, from a coupled elastic response due to compaction of pore space, or more slowly, with the diffusion of water from the surface.


2010 ◽  
Vol 10 (7) ◽  
pp. 1629-1633 ◽  
Author(s):  
M. K. Kachakhidze ◽  
R. Kiladze ◽  
N. Kachakhidze ◽  
V. Kukhianidze ◽  
G. Ramishvili

Abstract. It is acceptable that earthquakes certain exogenous (cosmic) triggering factors may exist in every seismoactive (s/a) region and in Caucasus among them. They have to correct earthquake occurring moment or play the triggering role in case when the region is at the limit of the critical value of the geological medium of course. Our aim is to reveal some exogenous factors possible to initiate earthquakes, on example of Caucasus s/a region, taking into account that the region is very complex by the point of view of the tectonic stress distribution. The compression stress directed from North to South (and vice versa) and the spread stress directed from East to West (and vice versa) are the main stresses acted in Caucasus region. No doubt that action of the smallest external stress may "work" as earthquakes triggering factor. In the presented work the Moon and the Sun perturbations are revealed as initiative agents of earthquakes when the directions of corresponding exogenous forces coincide with the directions of the compression stress or the spreading tectonic stress in the region.


2007 ◽  
Vol 97 (6) ◽  
pp. 4048-4057 ◽  
Author(s):  
J. H. Koenig ◽  
Kazuo Ikeda

We previously demonstrated that the tergotrochanteral muscle (TTM) of Drosophila is innervated by unique synapses that possess a small readily releasable/recycling vesicle population (active zone population), but not the larger reserve vesicle population observed at other neuromuscular junctions in this animal. Using light and electron microscopic techniques and intracellular recording from the G1 muscle fiber of the TTM, the release and recycling characteristics of the readily releasable/recycling population were observed without any possible contribution from a reserve population. Our results indicate 1) the total number of vesicles in synapses presynaptic to the G1 fiber correlates with the total number of quanta that can be released onto this fiber; 2) the number of quanta released by a single action potential onto the G1 fiber is about one half the number of morphologically “docked” vesicles in active zones onto the G1, and this ratio decreases in a partially depleted state; 3) the recycling rate at 1-Hz stimulation, a frequency that does not cause any depression, is 0.24 recycled vesicle/active zone/s; and 4) normal-appearing spontaneous release occurs from the active zone vesicle population and, unlike synapses that possess a reserve population, the frequency of this release is reduced after high-frequency evoked activity.


2019 ◽  
Vol 127 ◽  
pp. 03007
Author(s):  
Elena Blagoveshchenskaya ◽  
Evgenia Lyskova ◽  
Konstantin Sannikov

The problem of the correlation of the global dynamic phenomenon “Chandler wobble” with the local dynamics in different parts of the Earth’s crust and lithosphere is wide of the solution. In this study, an attempt was made to approach the solution by analyzing the temporal variations of local seismic activity in the restricted geospace volumes (GSV) within the uniform seismoactive regions. The driver of Chandler wobble is the deep mantle – the most hard and most massive Earth’s layer, whose large inertia tensor value is able to keep up Chandler’s specific rotation of the Earth for a long time. We use the geocentric coordinate system where daily rotation is absent. In this system Chandler wobble is very slow rotation of the Earth around the current equatorial axis (the pole of which is denoted as EP14). Probably, this slow rotation can influence on the seismic events in the GSV. This influence is proposed to determine by the some statistical parameter EP14gsv that indicates the most typical position EP14 on equator when the most part of the earthquakes have occurred in the given GSV. For some geospace volumes the distribution indicates certain longitudes, where the number of seismic events is maximal or minimal.


Sign in / Sign up

Export Citation Format

Share Document