scholarly journals THE EFFECTIVENESS OF RETURN SLUDGE IN REMOVING UNDESIRABLE MATERIALS FROM CLARIFLOCCULATOR BASINS

2021 ◽  
Vol 25 (5) ◽  
pp. 95-102
Author(s):  
Ali A. Hasan ◽  

To assess the use of returned sludge in water reatment, samples were brought from the Tigris River water during the summer and fall of 2002. A chemical treatment was carried out on it using alum as a coagulant, and after adding different percentages of sludge deposited at the bottom of the clarification ponds, it was found that returning 50% of the sludge improves the removal efficiency by an amount that can reach 14%. This applies to models with low and medium turbidity; otherwise, the reduction in removal efficiency is due again. The aluminium sulphate and hydroxides deposited at the bottom of the pond and recycled with the reflux sludge contributed to the improvement of the removal efficiency.

Author(s):  
Minja Bogunović ◽  
Tijana Marjanović ◽  
Ivana Ivančev-Tumbas

Emerging microcontaminants benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) are widely used anthropogenic markers from a group of pharmaceuticals and personal care products. They have different logD values and charges at neutral pH (2.96 neutral for BP; 3.65 negative and neutral for BP-3; 0.28 and neutral for CF). The goal of this study was to assess the efficacy of coagulation/flocculation/sedimentation (C/F/S), adsorption onto two types of powdered activated carbon (PAC)/sedimentation (PAC/S) and the combination of these two processes in different dosing sequences (PAC/C/F/S) and with/without ultrafiltration (powdered activated carbon/ultrafiltration—PAC/UF, coagulation/UF—CoA/UF) for the removal of selected micropollutants from river water. It was shown that the removal efficiency of benzophenones by coagulation depends on the season, while CF was moderately removed (40–70%). The removal of neutral BP by two PACs unexpectedly differed (near 40% and ˃93%), while the removal of BP-3 was excellent (>95%). PACs were not efficient for the removal of hydrophilic CF. Combined PAC/C/F/S yielded excellent removal for BP and BP-3 regardless of PAC type only when the PAC addition was followed by C/F/S, while C/F/S efficiency for CF diminished. The combination of UF with PAC or coagulant showed also high efficacy for benzophenones, but was negligible for CF removal.


RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27417-27422 ◽  
Author(s):  
Peng Jin ◽  
Yinyan Chen ◽  
Zhanwang Zheng ◽  
Qizhen Du

A novel simultaneous nitrification and denitrification Klebsiella sp. exhibits high nitrogen removal efficiency under low-temperature and low C/N wastewater.


2020 ◽  
Vol 1002 ◽  
pp. 498-507
Author(s):  
K.Ibrahim Rawa ◽  
Aseel Ibrahim Mahmood ◽  
Radhi M. Chyad

The project presents the use of laser and magnetic nanoparticles like iron oxide (Fe3O4) in heavy metal detection in water. In this method, metal Nanomagnets particles result in a magnetic reagent for the rapid removal of heavy metals from solutions or water of magnitude to concentration 0.25wt%. This can be done by measuring the magneto-optical parameters (as a hysteric loop) of the solution as an indication of the change in concentrations of the detected heavy metal. The samples used in this work using the Tigris River water that supported from al-Wathba lab. water projects of the Baghdad water directorate at Baghdad-Iraq. Putting here a study of the effect of graphene and metal oxide such as cobalt and nickel which doped the ferrofluid (iron oxide) /polymer/water (Tigris river water) composite on the magneto-optical properties. The graphene adding had the best result in low threshold magnetic field which was 67mGauss, give the motive to use it in fast sensing and detecting of heavy metal in Tigris river water.


2018 ◽  
Vol 162 ◽  
pp. 05001
Author(s):  
Nawar Al-Musawi

Diyala River is a tributary of Tigris River, it is one of the important rivers in Iraq. It covers a total distance of 445 km (275 miles). 32600 km2 is the area that drains by Diyala River between Iraqi-Iranian borders. This research aims to evaluate the water quality index WQI of Diyala River, where three stations were chosen along the river. These stations are D12 at Jalawlaa City at the beginning of Diyala River, the second station is D15 at Baaquba City at the mid distance of the river, and the third station is D17 which is the last station before the confluence of Diyala River with Tigris River at Baghdad city. Bhargava method was used in order to evaluate the water quality index for both irrigation and drinking uses. The results indicated that Diyala river water quality at its beginning was excellent for irrigation and good for drinking, while at the mid distance of the river, it was good for irrigation but heavily polluted and unsafe for drinking. Water quality of the river at the third site was acceptable for irrigation but again severely polluted and unsafe for drinking.


2007 ◽  
Vol 41 (9) ◽  
pp. 2028-2038 ◽  
Author(s):  
Isabel Beauchesne ◽  
Ridha Ben Cheikh ◽  
Guy Mercier ◽  
Jean-François Blais ◽  
Taha Ouarda

2018 ◽  
Vol 156 ◽  
pp. 03038 ◽  
Author(s):  
Reni Desmiarti ◽  
Ariadi Hazmi ◽  
Primas Emeraldi ◽  
Munas Martynis ◽  
Yenni Trianda ◽  
...  

Inductively coupled plasma system was used in drinking water treatment system to kill the microorganisms in water such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC) from river water. The aim of this study was to investigate the effect of flowrate on removal efficiency (RE), death rate, and death yield and energy consumption of bacteria's. The frequency of the system was set at 4.6 MHz. The results show that the removal efficiencies and death rate of TC, FC and OC decreased with increasing flowrate. Compared to FC, the first-order reactions of TC and OC were lower in the following order: FC > OC > TC. The death yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 19.44 to 20.55 W/cm2 and the energy consumption was 0.26, 0.32, and 0.67 with flow rate at 20, 10 and 5 mL/minute, respectively. These results are very necessary to improve drinking water treatment.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Memet Varol ◽  
Bülent Gökot ◽  
Aysel Bekleyen

Diyarbakır is the biggest city and the largest urban settlement in the Tigris Basin in Turkey. It has been gradually developing and growing thanks to the Southeastern Anatolia Project (GAP), and is one of the most important centers of industry, agriculture and animal husbandry in the Tigris Basin. The Tigris River is an important water source for the city, and it serves for irrigation, fishing, recreation and receiving wastewater. With the development of industry, agriculture and the growth of urban population, its pollution has become a serious problem. Pollution from domestic, industrial and agricultural activities has led to deterioration of water quality. In this context, the aim of the present study is to identify point sources of pollution and to assess the surface water quality of the Tigris River in the study area by monitoring physicochemical parameters. Diyarbakır produced a negative impact on the Tigris River water quality, particularly after the WWTP discharge. Concentrations of chemical oxygen demand, organic nitrogen, total nitrogen and total phosphorus increased markedly downstream of Diyarbakır WWTP discharge point. During the summer, the extent of organic pollution was so serious in the stations, downstream of WWTP, that dissolved oxygen became almost absent from the river water. The metal concentrations of all water samples were mostly below or close to the maximum permitted concentration for protection of aquatic life and drinking water.


Sign in / Sign up

Export Citation Format

Share Document