scholarly journals What Does the Brain Tell about Scarcity Bias? Cognitive Neuroscience Evidence of Decision Making under Scarcity

Author(s):  
Wi-Suk Kwon ◽  
Gopikrishna Deshpande ◽  
Jeffrey Katz ◽  
Sang-Eun Byun
Author(s):  
Nicholas Shea

Can findings from psychology and cognitive neuroscience about the neural mechanisms involved in decision-making tell us anything useful about the commonly-understood mental phenomenon of making voluntary choices? Two philosophical objections are considered. First, that the neural data is subpersonal, and so cannot enter into illuminating explanations of personal-level phenomena like voluntary action. Secondly, that mental properties are multiply realized in the brain in such a way as to make them insusceptible to neuroscientific study. The chapter argues that both objections would be weakened by the discovery of empirical generalizations connecting subpersonal properties with personal-level phenomena. It gives three case studies that furnish evidence to that effect. It argues that the existence of such interrelations is consistent with a plausible construal of the personal-subpersonal distinction. Furthermore, there is no reason to suppose that the notion of subpersonal representation relied on in cognitive neuroscience illicitly imports personal-level phenomena like consciousness or normativity, or is otherwise explanatorily problematic.


2021 ◽  
pp. 107385842110039
Author(s):  
Kristin F. Phillips ◽  
Harald Sontheimer

Once strictly the domain of medical and graduate education, neuroscience has made its way into the undergraduate curriculum with over 230 colleges and universities now offering a bachelor’s degree in neuroscience. The disciplinary focus on the brain teaches students to apply science to the understanding of human behavior, human interactions, sensation, emotions, and decision making. In this article, we encourage new and existing undergraduate neuroscience programs to envision neuroscience as a broad discipline with the potential to develop competencies suitable for a variety of careers that reach well beyond research and medicine. This article describes our philosophy and illustrates a broad-based undergraduate degree in neuroscience implemented at a major state university, Virginia Tech. We highlight the fact that the research-centered Experimental Neuroscience major is least popular of our four distinct majors, which underscores our philosophy that undergraduate neuroscience can cater to a different audience than traditionally thought.


Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Li ◽  
Carol Yeh-Yun Lin ◽  
Ting-Ting Chang ◽  
Nai-Shing Yen ◽  
Danchi Tan

AbstractManagers face risk in explorative decision-making and those who are better at such decisions can achieve future viability. To understand what makes a manager effective at explorative decision-making requires an analysis of the manager’s motivational characteristics. The behavioral activation/inhibition system (BAS/BIS), fitting the motivational orientation of “approach” or “avoidance,” can affect individual decision-making. However, very little is known about the neural correlates of BAS/BIS orientation and their interrelationship with the mental activity during explorative decision-making. We conducted an fMRI study on 111 potential managers to investigate how the brain responses of explorative decision-making interact with BAS/BIS. Participants were separated into high- and low-performance groups based on the median exploration-score. The low-performance group showed significantly higher BAS than that of the high-performance group, and its BAS had significant negative association with neural networks related to reward-seeking during explorative decision-making. Moreover, the BIS of the low-performance group was negatively correlated with the activation of cerebral regions responding to risk-choice during explorative decision-making. Our finding showed that BAS/BIS was associated with the brain activation during explorative decision-making only in the low-performance group. This study contributed to the understanding of the micro-foundations of strategically relevant decision-making and has an implication for management development.


2018 ◽  
Vol 40 (2) ◽  
pp. 699-712 ◽  
Author(s):  
Daniel Shaw ◽  
Kristína Czekóová ◽  
Martin Gajdoš ◽  
Rostislav Staněk ◽  
Jiří Špalek ◽  
...  

2021 ◽  
Author(s):  
Alireza Asgari ◽  
yvan beauregard

With its diversification in products and services, today’s marketplace makes competition wildly dynamic and unpredictable for industries. In such an environment, daily operational decision-making has a vital role in producing value for products and services while avoiding the risk of loss and hazard to human health and safety. However, it makes a large portion of operational costs for industries. The main reason is that decision-making belongs to the operational tasks dominated by humans. The less involvement of humans, as a less controllable entity, in industrial operation could also favorable for improving workplace health and safety. To this end, artificial intelligence is proposed as an alternative to doing human decision-making tasks. Still, some of the functional characteristics of the brain that allow humans to make decisions in unpredictable environments like the current industry, especially knowledge generalization, are challenging for artificial intelligence. To find an applicable solution, we study the principles that underlie the human brain functions in decision-making. The relative base functions are realized to develop a model in a simulated unpredictable environment for a decision-making system that could decide which information is beneficial to choose. The method executed to build our model's neuronal interactions is unique that aims to mimic some simple functions of the brain in decision-making. It has the potential to develop for systems acting in the higher abstraction levels and complexities in real-world environments. This system and our study will help to integrate more artificial intelligence in industrial operations and settings. The more successful implementation of artificial intelligence will be the steeper decreasing operational costs and risks.


Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions require the brain to make categorical choices based on accumulated sensory evidence. The underlying computations have been studied using either phenomenological drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both classes of models can account for a large body of experimental data, it remains unclear to what extent their dynamics are qualitatively equivalent. Here we show that, unlike the drift diffusion model, the attractor model can operate in different integration regimes: an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision-states leading to a crossover between weighting mostly early evidence (primacy regime) to weighting late evidence (recency regime). Between these two limiting cases, we found a novel regime, which we name flexible categorization, in which fluctuations are strong enough to reverse initial categorizations, but only if they are incorrect. This asymmetry in the reversing probability results in a non-monotonic psychometric curve, a novel and distinctive feature of the attractor model. Finally, we show psychophysical evidence for the crossover between integration regimes predicted by the attractor model and for the relevance of this new regime. Our findings point to correcting transitions as an important yet overlooked feature of perceptual decision making.


2021 ◽  
Author(s):  
Javier Orlandi ◽  
Mohammad Adbolrahmani ◽  
Ryo Aoki ◽  
Dmitry Lyamzin ◽  
Andrea Benucci

Abstract Choice information appears in the brain as distributed signals with top-down and bottom-up components that together support decision-making computations. In sensory and associative cortical regions, the presence of choice signals, their strength, and area specificity are known to be elusive and changeable, limiting a cohesive understanding of their computational significance. In this study, examining the mesoscale activity in mouse posterior cortex during a complex visual discrimination task, we found that broadly distributed choice signals defined a decision variable in a low-dimensional embedding space of multi-area activations, particularly along the ventral visual stream. The subspace they defined was near-orthogonal to concurrently represented sensory and motor-related activations, and it was modulated by task difficulty and contextually by the animals’ attention state. To mechanistically relate choice representations to decision-making computations, we trained recurrent neural networks with the animals’ choices and found an equivalent decision variable whose context-dependent dynamics agreed with that of the neural data. In conclusion, our results demonstrated an independent decision variable broadly represented in the posterior cortex, controlled by task features and cognitive demands. Its dynamics reflected decision computations, possibly linked to context-dependent feedback signals used for probabilistic-inference computations in variable animal-environment interactions.


Sign in / Sign up

Export Citation Format

Share Document