scholarly journals BUCKLING STRENGTH OF TIMBER HYBRID COLUMNS REINFORCED WITH STEEL PLATES AND CARBON FIBER SHEETS : Part 2 Buckling stress on timber hybrid column reinforced with steel plates and carbon fiber sheets

Author(s):  
Tetsuro ONO ◽  
Hiroomi TANAKA ◽  
Hideki IDOTA
2014 ◽  
Vol 501-504 ◽  
pp. 2509-2514
Author(s):  
Jian Hua Shao ◽  
Wen He

The mechanical properties of low-yield-point (LYP) steel and its advantages as seismic steel are introduced in this paper. The theoretical equations of inelastic shear buckling stress at the pure shear action for the LYP steel are derived from unified theory of plastic buckling. The relationship curve of inelastic shear buckling strength and width-thickness ratio of LYP steel shear wall at the different height-width ratios of plate is given through iteration calculation process. The effectiveness of theoretical equations used for calculating the buckling stress is verified by experimental results.


2020 ◽  
Vol 23 (10) ◽  
pp. 2204-2219
Author(s):  
Jun Wan ◽  
Jian Cai ◽  
Yue-Ling Long ◽  
Qing-Jun Chen

Based on the energy method, this article presents a theoretical study on the elastic local buckling of steel plates in rectangular concrete-filled steel tubular columns with binding bars subjected to eccentric compression. The formulas for elastic local buckling strength of the steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars are derived, assuming that the loaded edges are clamped and the unloaded edges of the steel plate are elastically restrained against rotation. Then, the experimental results are compared with these formulas, which exhibits good agreement. Subsequently, the formulas are used to study the elastic local buckling behavior of steel plates in rectangular concrete-filled steel tubular columns with binding bars under eccentric compression. It is found that the local buckling stress of steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars is significantly influenced by the stress gradient coefficient, width-to-thickness ratio, and the longitudinal spacing of binding bars. With the decrease of width–thickness ratios or the longitudinal spacing of binding bars or with the increase of the stress gradient coefficient, the local buckling stress increases. Furthermore, the influence of the longitudinal spacing of binding bar is more significant than the stress gradient coefficients. Finally, appropriate limitation for depth-to-thickness ratios ( D/ t), width-to-thickness ratios ( B/ t), and binding bar longitudinal spacing at various stress gradient coefficients ( α0) corresponding to different cross-sectional aspect ratios ( D/ B) are suggested for the design of rectangular concrete-filled steel tubular columns with binding bars under eccentric compression.


2016 ◽  
Vol 37 (5) ◽  
pp. 548-553 ◽  
Author(s):  
William K. Wilson ◽  
Randal P. Morris ◽  
Adam J. Ward ◽  
Nikoletta L. Carayannopoulos ◽  
Vinod K. Panchbhavi

2012 ◽  
Vol 18 (9) ◽  
pp. 1429-1435
Author(s):  
Viet Duc Dang ◽  
Yoshiaki Okui ◽  
Koichi Hagiwara ◽  
Masatsugu Nagai

2007 ◽  
Vol 348-349 ◽  
pp. 917-920
Author(s):  
Chang Sik Choi ◽  
Yun Cheul Choi ◽  
Hyun Ki Choi ◽  
M.S. Lee

A series of three shear wall specimens were tested under constant axial stress and reversed cyclical lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening induced by remodeling. One of these specimens was tested in the as-built condition and the other two were retrofitted prior to testing. The retrofit involved the use of carbon fiber sheets and steel plates (a thickness of 3mm) over the entire face of the wall. The test results showed that the failed specimens had shear fractures and that two different types of retrofitting strategies had different effects on the strengths of each specimen.


2017 ◽  
Vol 25 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Kazuya Mitsui ◽  
Atsushi Sato

Abstract In Japan, built-up member composed with light gauge is used for studs of shear wall. Flexural buckling stress of built-up compression member is evaluated by effective slenderness ratio. The effective slenderness ratio of light gauge built-up compression member is proposed for heavy sections; however, it is not verified that it can be adopted in light gauge. In this paper, full scale testing of light gauge built-up members are conducted. From the test results, it is shown that current Standard overestimates the buckling strength. Based on energy equilibrium theory, modified effective slenderness ratio for light gauge built-up member is derived. The validity of the modified effective slenderness ratio is shown with test results.


2014 ◽  
Vol 638-640 ◽  
pp. 1754-1757
Author(s):  
Lei Chen

The cylindrical shells under global bending with different geometric parameters display different failure behavior. The size of typical buckles under axial compressive stress regimes is rather small and extends over a very small zone, with the axial compressive stress reaching the critical value. The first estimate of the elastic buckling strength in bending is the condition in which the most compressed fiber reaches the buckling stress for uniform axial compression. For short cylinders, local bifurcation buckling occurs at the middle of the most compressed side of the shell, and geometric nonlinearity has a little effect on the buckling strength, while for medium-length and long cylinders, the geometric nonlinearity and the ovalization of the cross-section should be considered. This paper explores the failure behavior in elastic cylinders in pure bending.


Author(s):  
Atsushi Sano ◽  
Naoya Matsubara ◽  
Naruyoshi Izumi ◽  
Masahiko Fujikubo

A method of estimating elastic buckling strength of a non-spherical tank intended for the use in LNG carriers is presented. Partially filled condition that causes combined meridional tension and circumferential compression is considered. Analytical expression of pre-buckling stress distributions is derived based on membrane shell theory. These stresses are applied to the elastic buckling strength analysis employing Hutchinson’s solution for a toroidal shell segment under similar stress condition. The buckling strength of a spherical shell is highly sensitive to initial shape imperfections, but these are not considered as a most fundamental case. The predicted stress distributions and elastic buckling strength are compared with those calculated by the 3D shell finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document