scholarly journals VIBRATION ANALYSIS MODELS OF SUPER HIGH-RISE RC BUILDINGS BASED ON DATABASE FOR STRUCTURAL DESIGN AND STUDY ON NONLINEAR RESPONSE CHARACTERISTICS TO PULSE-LIKE GROUND MOTIONS

2020 ◽  
Vol 26 (64) ◽  
pp. 881-886
Author(s):  
Masakazu MURATA ◽  
Masayuki NAGANO ◽  
Takehiko TANUMA ◽  
Satoshi ODA
2018 ◽  
Vol 56 (4) ◽  
pp. 287-295
Author(s):  
Y. Fukumoto ◽  
K. Nishimura ◽  
K. Sasamoto ◽  
M. Kataoka

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2023
Author(s):  
Ruixin Li ◽  
Yiwan Zhao ◽  
Gaochong Lv ◽  
Weilin Li ◽  
Jiayin Zhu ◽  
...  

Near-wall microenvironment of a building refers to parameters such as wind speed, temperature, relative humidity, solar radiation near the building’s façade, etc. The distribution of these parameters on the building façade shows a certain variation based on changes in height. As a technology of passive heating and ventilation, the effectiveness of this application on heat collection wall is significantly affected by the near-wall microclimate, which is manifested by the differences, and rules of the thermal process of the components present at different elevations. To explore the feasibility and specificity of this application of heat collection wall in high-rise buildings, this study uses three typical high-rise buildings from Zhengzhou, China, as research buildings. Periodic measurements of the near-wall microclimate during winter and summer were carried out, and the changing rules of vertical and horizontal microclimate were discussed in detail. Later, by combining these measured data with numerical method, thermal process and performance of heat collection wall based on increasing altitude were quantitatively analyzed through numerical calculations, and the optimum scheme for heat collection wall components was summarized to provide a theoretical basis for the structural design of heat-collecting wall in high-rise buildings.


Author(s):  
Canxing Qiu ◽  
Jiawang Liu ◽  
Jun Teng ◽  
Zuohua Li ◽  
Xiuli Du

Shape memory alloys (SMAs) gained increasing attentions from the perspective of seismic protection, primarily because of their excellent superelasticity, satisfactory damping and high fatigue life. However, the superelastic strain of SMAs has an upper limit, beyond which the material completes the austenite to martensite phase transformation and is followed by noticeable strain hardening. The strain hardening behavior would not only induce high force demand to the protected structures, but also cause unrecoverable deformation. More importantly, the SMAs may fracture if the deformation demand exceeds their capacity under severe earthquakes. In the case of installing SMA braces (SMABs) in the multi-story concentrically braced frames (CBFs), the material failure would lead to the malfunction of SMABs and this further causes building collapse. The friction mechanism could behave as a “fuse” through capping the strength demand at a constant level. Therefore, this paper suggests connecting the SMAB with a friction damper to achieve a novel brace, i.e. the SMA-friction damping brace (SMAFDB). A proof-of-concept test was carried out on a homemade specimen and the test results validated the novel brace behaves in a desirable manner. In addition, to explore the seismic response characteristics of the SMAFDB within structures, a six-story CBF equipped with SMAFDBs was designed and compared against those incorporated with SMABs or friction damping braces (FDBs) at the frequently occurred earthquake (FOE), design basis earthquake (DBE) and maximum considered earthquake (MCE). The comparative results show the SMAFDB is superior to the counterparts. Under the FOE and DBE ground motions, the SMAFDBs successfully eliminated residual deformations as the SMABs do, and achieved identical maximum interstory drift as the FDBs. Under the MCE ground motions, the SMAFDBs not only well addressed the brace failure problem that was possibly encountered in the SMABs, but also better controlled residual deformation than the FDBs.


Sign in / Sign up

Export Citation Format

Share Document