Seismic performance evaluation of multi-story CBFs equipped with SMA-friction damping braces

Author(s):  
Canxing Qiu ◽  
Jiawang Liu ◽  
Jun Teng ◽  
Zuohua Li ◽  
Xiuli Du

Shape memory alloys (SMAs) gained increasing attentions from the perspective of seismic protection, primarily because of their excellent superelasticity, satisfactory damping and high fatigue life. However, the superelastic strain of SMAs has an upper limit, beyond which the material completes the austenite to martensite phase transformation and is followed by noticeable strain hardening. The strain hardening behavior would not only induce high force demand to the protected structures, but also cause unrecoverable deformation. More importantly, the SMAs may fracture if the deformation demand exceeds their capacity under severe earthquakes. In the case of installing SMA braces (SMABs) in the multi-story concentrically braced frames (CBFs), the material failure would lead to the malfunction of SMABs and this further causes building collapse. The friction mechanism could behave as a “fuse” through capping the strength demand at a constant level. Therefore, this paper suggests connecting the SMAB with a friction damper to achieve a novel brace, i.e. the SMA-friction damping brace (SMAFDB). A proof-of-concept test was carried out on a homemade specimen and the test results validated the novel brace behaves in a desirable manner. In addition, to explore the seismic response characteristics of the SMAFDB within structures, a six-story CBF equipped with SMAFDBs was designed and compared against those incorporated with SMABs or friction damping braces (FDBs) at the frequently occurred earthquake (FOE), design basis earthquake (DBE) and maximum considered earthquake (MCE). The comparative results show the SMAFDB is superior to the counterparts. Under the FOE and DBE ground motions, the SMAFDBs successfully eliminated residual deformations as the SMABs do, and achieved identical maximum interstory drift as the FDBs. Under the MCE ground motions, the SMAFDBs not only well addressed the brace failure problem that was possibly encountered in the SMABs, but also better controlled residual deformation than the FDBs.

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Jong Wan Hu ◽  
Myung-Hyun Noh

This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs) subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.


Author(s):  
Nader Hoveidae

The Conventional buckling restrained braces used in concentrically braced frames are expected to yield in both tension and compression without major degradation of capacity under severe seismic ground motions. One of the weakness points of a standard buckling restrained braced frame is the low post-yield stiffness and thus large residual deformation under moderate to severe ground motions. This phenomenon can be related to the low post-yield stiffness of the core segment in comparison to its elastic stiffness. This paper investigates the application of stainless steel as the core material in a hybrid buckling restrained brace. The “hybrid” term arises from the use of more than one core component with different steel materials, including high strength high-performance steel and stainless steel (304L) with high strain hardening in the core of buckling restrained brace. Nonlinear dynamic time history analyses were conducted on a variety of diagonally braced frames with different heights, in order to compare the seismic performance of standard (non-hybrid) and hybrid buckling restrained braced frames. The results showed that the proposed hybrid buckling restrained braces reduce the inter-story and specially the residual drift demands in buckling restrained braced frames.


2020 ◽  
Vol 23 (16) ◽  
pp. 3525-3540
Author(s):  
Asad Naeem ◽  
Jinkoo Kim

In this study, the seismic performance of a rotational friction damper with restoring force is presented. The torsional spring friction damper consists of rotational friction pads with the heavy duty torsional springs attached on both sides of the friction damper. An analytical model and a design procedure for the damper are developed using capacity spectrum method. A parametric study is carried out to investigate the influence of the torsional spring in the response of the structure when subjected to ground motions. The seismic performances of steel structures retrofitted with the torsional spring friction damper and conventional rotational friction dampers are evaluated using fragility analysis, which shows that the structure retrofitted with the torsional spring friction damper has the smallest probability of reaching the specific limit states.


2019 ◽  
Vol 90 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Louis Gagnon ◽  
Marco Morandini ◽  
Gian Luca Ghiringhelli

Abstract This survey provides an insight into the modeling and testing of uniaxial friction dampers. The focus is on attenuating the linear relative movement along planar surfaces for frequencies between 10 Hz and 1 kHz. An overview of the different approaches seen in the literature concerning friction damping is provided. Examples and evaluation of such dampers excited over a wide range of frequencies are presented. The information required to develop models of friction dampers is covered. To that end, different modeling approaches are presented for dry friction. Dynamic friction models with an internal state are covered, and their advantages are described. Other modeling approaches are reported for complete systems with friction dampers. Both numerical and analytical models are covered. Experimental configurations from a selection of authors are also included. Finally, a series of suggestions for the numerical modeling and experimental testing of a friction damper are given.


2019 ◽  
Vol 109 (5) ◽  
pp. 1812-1828 ◽  
Author(s):  
Nenad Bijelić ◽  
Ting Lin ◽  
Gregory G. Deierlein

Abstract Limited data on strong earthquakes and their effect on structures pose challenges of making reliable risk assessments of tall buildings. For instance, although the collapse safety of tall buildings is likely controlled by large‐magnitude earthquakes with long durations and high low‐frequency content, there are few available recorded ground motions to evaluate these issues. The influence of geologic basins on amplifying ground‐motion effects raises additional questions. Absent recorded motions from past large magnitude earthquakes, physics‐based ground‐motion simulations provide a viable alternative. This article examines collapse risk and drift demands of a 20‐story archetype tall building using ground motions at four sites in the Los Angeles (LA) basin. Seismic demands of the building are calculated form nonlinear structural analyses using large datasets (∼500,000 ground motions per site) of unscaled, site‐specific simulated seismograms. Seismic hazard and building performance from direct analysis of Southern California Earthquake Center CyberShake motions are contrasted with values obtained based on conventional approaches that rely on recorded motions coupled with probabilistic seismic hazard assessments. At the LA downtown site, the two approaches yield similar estimates of mean annual frequency of collapse (λc), whereas nonlinear drift demands estimated with direct analysis are slightly larger primarily because of differences in hazard curves. Conversely, at the deep basin site, the CyberShake‐based analysis yields around seven times larger λc than the conventional approach, and both hazard and spectral shapes of the motions drive the differences. Deaggregation of collapse risk is used to identify the relative contributions of causal earthquakes, linking building responses with specific seismograms and contrasting collapse risk with hazard. A strong discriminative power of average spectral acceleration and significant duration for predicting collapse is observed.


2013 ◽  
Vol 690-693 ◽  
pp. 1979-1982 ◽  
Author(s):  
Peng Fei Zhao ◽  
Qiang Zhang ◽  
Jun Wu ◽  
Di Zhang

For lot of structures, especially turbine blades, damper can dissipate the vibration energy by friction. Investigating the property of metal dry friction damping can give many usable data for response analysis of damping blade which is important in damped blade designs. The paper constructs an experimental rig and carries out experiment with pieces having radius of curvature 6mm, 12mm and 24mm. The relative displacement between contact surfaces and the friction force changed with time were obtained for different initial pressure and frequency of exciting force. Hysteresis curves of dry friction damper were derived. The variations of friction coefficient of stick-slip area, equivalent stiffness and equivalent damping were calculated based on experimental data.


Author(s):  
Kenan Y. Sanliturk ◽  
Anthony B. Stanbridge ◽  
David J. Ewins

Abstract This paper describes a procedure that combines the measurement of dry-friction contact behaviour, its theoretical modelling and the analysis of structures with friction joints. The experimental part describes a friction damper test rig which is specifically designed for measuring the dynamic force-response characteristics of a joint. A hybrid mathematical model, which is a combination of the traditional macro- and micro-slip models, is proposed to represent the joint characteristics and it is shown that such a model represents the measured behaviour better than any of the traditional ones. The final part of the paper demonstrates the procedure applied to a blade-damper test structure and which includes testing, analysis and correlation of both sets of results. The non-linear response levels are predicted using a dedicated program based on the Harmonic Balance Method and it is found that the proposed analysis procedure can predict the amount of response reduction, the optimum friction damper load and the locked natural frequency quite accurately.


Author(s):  
Aldo A. Ferri ◽  
Wayne E. Whiteman

A stability analysis is conducted of an autonomous single-degree-of-freedom system damped with negative viscous damping and a displacement-dependent Coulomb friction force. The geometry of the dry friction damping element yields a friction force that grows linearly with the system displacement. The most direct application of this system is in the study of a turbomachinery blade with shroud interfaces designed to achieve this geometry. Recent studies have shown that the damping of systems with this type of displacement-dependent dry friction force resembles linear structural damping and suggests that this arrangement may be an effective means of flutter suppression in these turbine and fan blade applications. For this study, the inclusion of negative viscous damping is used in order to approximate destabilizing aerodynamic forces. An exact analysis is conducted to determine the stability of this autonomous system. Results show that energy losses from the displacement-dependent dry friction damper are large enough to achieve local and even global stability under certain conditions.


Sign in / Sign up

Export Citation Format

Share Document