scholarly journals DEVELOPMENT OF STATIC ANALYSIS PROGRAM FOR PILE FOUNDATION BY PILE GROUP FRAME MODEL AND CALCULATION EXAMPLE

2021 ◽  
Vol 27 (67) ◽  
pp. 1213-1218
Author(s):  
Yuki WADA ◽  
Katsuichirou HIJIKATA
Pondasi ◽  
2020 ◽  
Vol 23 (2) ◽  
pp. 1
Author(s):  
Adi Sunarno ◽  
Rinda Karlinasari ◽  
Abdul Rochim

ABSTRACTThe rapid infrastructure development is one of the indicators on the country economic progress. Indonesia as one of the largest archipelagic countries in the world, should be prioritized the port infrastructure to support the maritime. One of the government’s solutions is infrastructure development of Kuala Tanjung port. This research analyzed bearing capacity and settlement of single and group pile foundation on port infrastructure of Kuala Tanjung so it is known that the port is safe to use. The data used are Standard Penetration Test data with soil stratigraphy that is clay and sand. The type of foundation used is Concrete Spun Pile 1000 mm and 600 mm with a pile length of 36 meters. The data are then analyzed by manual calculation and Allpile 6.5E program based on Reese method and methods such as Vesic and Converse-Labarre. The results showed that single pile foundations of 1000 mm and 600 mm each had allowable capacity (Qall) 492.78-538.81 ton and 110.65-128.31 ton, with vertical load (Q) of 330.90 ton, settlement 0.56-1.17 cm and 3.32-3.64 cm, lateral deflection 27.50 cm and 94.90 cm. While the 1000 mm and 600 mm pile group foundations respectively have Qall 8717.31-10796.29 tons and 2059.25-2566.32 tons, with Q of 6618 tons, settlement 0.56-1.68 cm and 3.32-3.64 cm, lateral deflection of 2.49 cm and 19.49 cm. The conclusion of the research indicates that the safe pile foundation used is 1000 mm group pile foundation. Keywords: Bearing Capacity; Foundations; Pile Foundation; Port Infrastructure; Settlement


2006 ◽  
Author(s):  
Sudip Basak

The environment prevalent in ocean necessitates the pile foundations supporting offshore structures to be designed against lateral cyclic loading initiated by wave action. Such quasi-static load reversal induces deterioration in the strength and stiffness of the soil-pile system introducing progressive reduction in the bearing capacity as well as settlement of the pile foundation. To understand the effect of lateral cyclic load on pile group, a new apparatus, consisting of mechanically and electrically controlled components, has been designed and fabricated. Each of the components of this apparatus is calibrated and a series of trial tests are performed for its performance study. This paper presents detailed description of the apparatus, calibration and operating principle of each of its components, the observations made from trial experiments and the relevant conclusions drawn therefrom.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Tianzhong Ma ◽  
Yanpeng Zhu ◽  
Xiaohui Yang ◽  
Yongqiang Ling

It is very necessary to research the bearing characteristics of composite pile group foundations with long and short piles under lateral load in loess areas, because these foundations are used widely. But few people researched this problem in loess areas up to now worldwide. In this paper, firstly, an indoor test model of a composite pile foundation with long and short piles is designed and then employed to explore the vertical load bearing characteristics and load transfer mechanisms of a single pile, a four-pile group, and a nine-pile group under different lateral loads. Secondly, ANSYS software is employed to analyze the load-bearing characteristics of the test model, and for comparison with the experimental results. The results demonstrate the following. (1) The lateral force versus pile head displacement curves of the pile foundation exhibit an obvious steep drop in section, which is a typical feature of piercing damage. A horizontal displacement limit of the pile foundation is 10 mm and 6mm for the ones sensitive to horizontal displacement. (2) The axial force along a pile and frictional resistance do not coincide, due to significant variations and discontinuities in the collapsibility of loess; a pile body exhibits multiple neutral points. Therefore, composite pile groups including both long and short piles could potentially maximize the bearing capacity and reduce pile settlement. (3) The distribution of stress and strain along the pile length is mainly concentrated from the pile head to a depth of about 1/3 of the pile length. If the lateral load is too large, short piles undergo rotation about their longitudinal axis and long piles undergo flexural deformation. Therefore, the lateral bearing capacity mainly relies on the strength of the soil at the interface with the pile or the horizontal displacement of the pile head.


2013 ◽  
Vol 680 ◽  
pp. 217-221 ◽  
Author(s):  
Yi Min Liu

The grouping pile foundation is widely used in the construction of bridge over sea and its scale of construction is generally dominated by the wave force on the pile groups. Because of the presence of the slab, not only the incident wave but also the diffraction wave should be considered in calculating wave loads on pile groups. The diffraction from a submerged circular cylinder representing the slab was taken as an example, and wave loads on piles in the diffraction wave field were calculated by using Morison formula. Results show that the effect of slab decreases with the increase of incident wave number. Changing laws of different piles in the pile-group foundation varied with the submerged depth. Wave loads at the meeting-wave side of slab is larger than the back side of that. And the presence of slab caused the deflexion of inline force. The grouping piles coefficient can be taken as 0.7.


2020 ◽  
Vol 28 (3) ◽  
pp. 378
Author(s):  
Rasdinanta Tarigan

Buildings that stand on soft soil usually use a pile foundation. Testing the ultimate bearing capacity of pile foundations in the field is a Pile Driving Analyzer (PDA) tool. Besides being inexpensive to test, the results can also be known quickly. This tool is supported by a software called CAPWAP (CAse Pile Wave Analysis Program).In this paper, a performance comparison of the Pile Driving Analyzer (PDA) and CAPWAP (CAse Pile Wave Analysis Program) software will be presented in producing the ultimate bearing capacity of pile foundations. The results of both will be analyzed in such a way that the causes of the differences in the performance of the Pile Driving Analyzer (PDA) and the CAPWAP software are known.The results obtained show that the performance of the Pile Driving Analyzer (PDA) tool will not be optimal if the energy transferred to the pile foundation is too small. The energy given by the hammer when struck must be in the range of 1% - 2%, if it is smaller then the performance of the tool in producing the ultimate bearing capacity will not be representative. The difference in the ultimate bearing capacity between the PDA device and the CAPWAP software for energy transferred to the pile foundation (EMX) under the specified energy standard is 10.71% - 33.23%. Meanwhile, energy that meets the specified standards has a value between 0.24% - 1.80%.


2018 ◽  
Vol 777 ◽  
pp. 559-563
Author(s):  
Yu Zhuo Jia ◽  
Guo Zheng Sun ◽  
Chang Qing Li ◽  
Long Long Tian

To analyze the characteristics of bearing capacity of high-cap pile foundation under inclined load and investigate the influence of vertical and horizontal component on the foundation at different loading angles, based on the background of the Yellow River Crossing project, a three-dimensional finite element model of high-cap foundation is simulated and analyzed with the finite element software ABAQUS. The conclusions are shown as follows: Under the same displacement condition, when the load inclination angle α from 0°(horizontal load) to 80°, the horizontal direction bearing capacity of the foundation increases from 684.8kN to 759.9kN, increases by 10.97%. Expands of vertical load component will affect the pile group effect, the shear force of the back row piles increases with the load inclined angle.


2012 ◽  
Vol 3 (2) ◽  
pp. 42-59 ◽  
Author(s):  
Pijush Samui ◽  
Subhamoy Bhattacharya ◽  
T. G. Sitharam

Collapse of pile-supported structures is still observed in liquefiable soils after most major earthquakes and remains a continuing concern to the geotechnical engineering community. Current methods for pile design in liquefiable soils concentrate on a bending mechanism arising from lateral loads due to inertia and/or soil movement (kinematic loads). Recent investigations demonstrated that a pile or pile group can become laterally unstable (buckling instability/ bifurcation) under the axial load (due to the dead load) alone if the soil surrounding the pile liquefies in an earthquake. This is due to the liquefaction-induced elimination of the soil bracings and the governing mechanism is similar to Euler’s buckling of unsupported struts. Analysed are 26 cases of pile foundation performance in liquefiable soils giving emphasis to the buckling instability using Support Vector Machine (SVM) method. SVM has recently emerged as an elegant pattern recognition tool. This tool has been used to classify pile performance against buckling failure. Each of the case studies reported is represented by four parameters: Effective buckling length of pile (Leff), the allowable load on the pile (P), Euler’s elastic critical load of the pile (Pcr) and minimum radius of gyration of the pile (rmin). The performance of the developed SVM is 100%.


Sign in / Sign up

Export Citation Format

Share Document