scholarly journals Perancangan Antena Printed Monopole Patch Elips dengan Konfigurasi EMA dan EMB untuk Pembaca RFID pada Frekuensi UHF

2021 ◽  
Vol 20 (1) ◽  
pp. 13-26
Author(s):  
Eva Yovita Dwi Utami ◽  
Fransiska Melathi Cahyaningtyas ◽  
Andreas Ardian Febrianto

Pada penelitian ini dirancang antena mikrostrip printed monopole patch elips konfigurasi EMA dan EMB untuk aplikasi pembaca RFID pada pita frekuensi UHF. Bentuk patch elips memiliki dua jenis konfigurasi, yaitu EMA (pencatuan pada sumbu mayor) dan EMB (pencatuan pada sumbu minor). Printed monopole ditambahkan pada bagian ground plane untuk memperbesar bandwidth antena. Antena disimulasikan dan direalisasikan menggunakan bahan FR4 epoxy dengan nilai permitivitas relatif sebesar 4,65 dan ketebalan 1,6 mm, sedangkan patch peradiasi dan ground plane menggunakan bahan tembaga. Hasil simulasi menunjukkan untuk konfigurasi EMA, diperoleh bandwidth sebesar 641,1 MHz dan gain 2,533 dB. Sementara untuk konfigurasi EMB diperoleh bandwidth sebesar 340,54 MHz dan gain sebesar 2,181 dB. Setelah antena direalisasikan, diperoleh hasil pengujian dengan konfigurasi EMA adalah return loss = -43,912 dB, VSWR = 1,013, bandwidth sebesar 1,053 GHz, dan gain = 6,41 dB. Sementara hasil pengujian dengan konfigurasi EMB adalah return loss = -32,409 dB, VSWR = 1,049, bandwidth sebesar 584 MHz, dan gain = 6,2 dB. Hasil simulasi maupun pengujian menunjukkan bahwa konfigurasi EMA memiliki bandwidth dan gain yang lebih baik daripada EMB. Namun demikian, kedua konfigurasi ini menghasilkan pola radiasi yang sama, yaitu pola radiasi omnidirectional pada bidang azimuth dan pola bidirectional pada bidang elevasi.

2021 ◽  
Author(s):  
Rohit Kumar Saini

Abstract A microstrip line –fed broadband dual circular polarized, two port printed monopole antenna is presented. The antenna consists of a ground plane with arrow shaped stub at the corner and a pair of inverted L-shaped feed lines. The 3dB axial ratio bandwidth of the antenna is about 58%(1.7GHz-3.1GHz) in which the return loss and isolation are better than 10dB and 12dB respectively. A parametric study of proposed antenna’s geometric parameters is given for understanding of the antenna performance. The realize gain, reflection coefficient (S 11 ) and transmission coefficient (S 21 ) are higher than 1, 10 and 12dB respectively within the entire axial ratio bandwidth (ARBW).


2021 ◽  
Vol 18 (3) ◽  
pp. 385-396
Author(s):  
Zaw Lwin ◽  
Thae Aye

This paper presents the design of a wideband circularly-polarized printed monopole antenna with a rhomboid shape. The rhomboid-shaped patch is fed by a microstrip line offset from the center to generate circular polarization (CP). The ground plane configuration is optimized for wide bandwidth operation. Bandwidth (satisfying both 10-dB return loss and 3-dB axial ratio) of 76% (1.92 - 4.27 GHz) is achieved in this research. The size of the proposed antenna is 0.386 2 0 l (55?66 mm2) where ?0 is the free space wavelength which corresponds to the center frequency of the bandwidth. The antenna has a fractional bandwidth-size ratio (BW/size) of 1.97 which is higher than most CP monopole antennas in the literature. This antenna is suitable for Wi-Fi, WiMAX, and other wireless applications which outperform using circular polarization.


Author(s):  
Gaurav Saxena ◽  
Priyanka Jain ◽  
Y. K. Awasthi

Abstract In this paper, a ultra-wideband (UWB) bandpass filter with stopband characteristics is presented using a multi-mode resonator (MMR) technique. An MMR is formed by loading three dumbbell-shaped (Mickey and circular) shunt stubs placed in the center and two symmetrical locations from ports, respectively. Three circular and arrowhead defected ground structures on the ground plane are introduced to achieve UWB bandwidth with a better roll-off rate. The proposed filter exhibits stopband characteristics from 10.8 to 20 GHz with a 0.4 dB return loss. The group delay and roll-off rate of the designed filter are <0.30 ns in the passband and 16 dB/GHz at lower and higher cut-off frequencies, respectively. The dimension of the filter is 0.74λg × 0.67λg mm2 and was fabricated on a cost-effective substrate. All simulated results are verified through the experimental results.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
Dina Mariani ◽  
Yanuar Mahfudz Safarudin

Digital television technology has more benefit than analog television, for example several TV channel may included in one frequency channel. The changing from analog to digital televisions system require more innovative antenna parameter such as working frequency, bandwidth, return loss, VSWR, and gain. In other hand, the size of the antenna must be minimalized, so it can be integrated inside digital television. This research used metamaterial element of Complementary Split Ring Resonator (CSSR) method with negative permittivity that manufactured in the patch and Double Pole Ground Plane in the ground side. The antenna ad 478-694 operating frequency. Antenna design and simulation using CST (Computer Simulation Technology) Microwave Studio 2012. The result show that return-loss value < -10 dB, and VSWR = 2 at 478-625 MHz range of frequency. Te value of gain is 3.27 dBi, it has 147 MHz bandwidth, and omnidirectional radiation pattern.


2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


2012 ◽  
Vol 1 (3) ◽  
pp. 266 ◽  
Author(s):  
Kamal raj Singh Rajoriya ◽  
P.K. Singhal

This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than ?/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document