METHOD OF RECEIPT OF METHYL ETHERS FOR DIESEL ENGINES FROM FATS OF ANIMAL ORIGIN

Author(s):  
Ю. Постол ◽  
◽  
М. Стручаєв ◽  
В. Гулевський ◽  
◽  
...  
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3472
Author(s):  
Dariusz Kurczyński ◽  
Grzegorz Wcisło ◽  
Piotr Łagowski

The use of biofuel is one method for limiting the harmful impact of diesel engines on the environment. It is also a way of gradually becoming less dependent on the depleting petroleum resources. New resources for producing biodiesel are currently being sought. The authors produced esters from animal fat waste, obtaining a fuel that can power diesel engines and identifying a way to utilise unnecessary waste. The animal fat methyl ester (AME) was produced using a reactor constructed for non-industrial ester production. The aim underlying this paper was to determine whether a diesel engine can be fuelled with AME biodiesel and to test this fuel’s impact on exhaust gas composition and fuel consumption. Fuelling a Perkins 1104D-44TA engine with AME biodiesel led to a reduction in the smoke opacity of the exhaust gas as well as in carbohydrate, particulate matter, and carbon monoxide concentrations. The carbon dioxide concentrations were similar for biodiesel and diesel fuel. Slight increases in nitrogen oxides concentrations and brake-specific fuel consumption were found for AMEs. An engine can be fuelled with AME biodiesel, but it is necessary to improve its low-temperature properties.


2020 ◽  
Vol 4 (4) ◽  
pp. 365-381
Author(s):  
Ny Anjara Fifi Ravelomanantsoa ◽  
Sarah Guth ◽  
Angelo Andrianiaina ◽  
Santino Andry ◽  
Anecia Gentles ◽  
...  

Seven zoonoses — human infections of animal origin — have emerged from the Coronaviridae family in the past century, including three viruses responsible for significant human mortality (SARS-CoV, MERS-CoV, and SARS-CoV-2) in the past twenty years alone. These three viruses, in addition to two older CoV zoonoses (HCoV-229E and HCoV-NL63) are believed to be originally derived from wild bat reservoir species. We review the molecular biology of the bat-derived Alpha- and Betacoronavirus genera, highlighting features that contribute to their potential for cross-species emergence, including the use of well-conserved mammalian host cell machinery for cell entry and a unique capacity for adaptation to novel host environments after host switching. The adaptive capacity of coronaviruses largely results from their large genomes, which reduce the risk of deleterious mutational errors and facilitate range-expanding recombination events by offering heightened redundancy in essential genetic material. Large CoV genomes are made possible by the unique proofreading capacity encoded for their RNA-dependent polymerase. We find that bat-borne SARS-related coronaviruses in the subgenus Sarbecovirus, the source clade for SARS-CoV and SARS-CoV-2, present a particularly poignant pandemic threat, due to the extraordinary viral genetic diversity represented among several sympatric species of their horseshoe bat hosts. To date, Sarbecovirus surveillance has been almost entirely restricted to China. More vigorous field research efforts tracking the circulation of Sarbecoviruses specifically and Betacoronaviruses more generally is needed across a broader global range if we are to avoid future repeats of the COVID-19 pandemic.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


Author(s):  
Serhii Kovalov

The expediency of using vehicles of liquefied petroleum gas as a motor fuel, as com-pared with traditional liquid motor fuels, in particular with diesel fuel, is shown. The advantages of converting diesel engines into gas ICEs with forced ignition with respect to conversion into gas diesel engines are substantiated. The analysis of methods for reducing the compression ratio in diesel engines when converting them into gas ICEs with forced ignition has been carried out. It is shown that for converting diesel engines into gas ICEs with forced ignition, it is advisable to use the Otto thermo-dynamic cycle with a decrease in the geometric degree of compression. The choice is grounded and an open combustion chamber in the form of an inverted axisymmetric “truncated cone” is developed. The proposed shape of the combustion chamber of a gas internal combustion engine for operation in the LPG reduces the geometric compression ratio of D-120 and D-144 diesel engines with an unseparated spherical combustion chamber, which reduces the geometric compression ratio from ε = 16,5 to ε = 9,4. The developed form of the combustion chamber allows the new diesel pistons or diesel pistons which are in operation to be in operation to be refined, instead of making special new gas pistons and to reduce the geometric compression ratio of diesel engines only by increasing the combustion chamber volume in the piston. This method of reducing the geometric degree of compression using conventional lathes is the most technologically advanced and cheap, as well as the least time consuming. Keywords: self-propelled chassis SSh-2540, wheeled tractors, diesel engines D-120 and D-144, gas engine with forced ignition, liquefied petroleum gas (LPG), compression ratio of the internal com-bustion engine, vehicles operating in the LPG.


2018 ◽  
Vol 19 (11) ◽  
pp. 30-35
Author(s):  
Marta Wójcik

The automotive sector is one of the fastest growing sectors of economy. The increasing amount of cars both in Polish and world roads results in the immeasurable benefits associated with the goods and human transport. On the other hand, this phenomenon caused the contamination of the environment. During the fuel combustion in petrol or diesel engines, the harmful gases, for example CO2, NOx and SOx are emitted. Apart from the negative impact on the environment, the emission of the aforementioned gases results in the deterioration of human conditions, as well as, the development of civilization diseases. In order to minimalize the harmful influence of an automotive industry on the environment, new technologies which can reduce the consumption of fuel or limit the fumes emission are developed. The first part of paper presents new solutions in an automotive sector which influence on the decline of the negative impact of automobiles on the environment. Additionally, proposed solutions affect the development of a car industry, taking into consideration environmental aspects.


Sign in / Sign up

Export Citation Format

Share Document