scholarly journals Ultrastructural organization of hemomicrocirculatory bed of the lungs affected by Doxorubicin

2019 ◽  
Vol 25 (3) ◽  
pp. 58-62
Author(s):  
L.M. Zaiats ◽  
O.O. Yankiv ◽  
I.V. Gunas ◽  
O.M. Shapoval ◽  
O.V. Shypitsina

One of the most effective anticancer drugs for breast cancer, lymphoma, soft tissue sarcoma, leukemia, some solid tumors is Doxorubicin. However, its antitumor effect directly correlates with the dose-dependent manifestation of toxicity to healthy tissues and body systems. The purpose of the study is to study the dynamics of ultrastructural changes of the hemomicrocirculatory bed under the influence of Doxorubicin. Animals were divided into 3 groups: I – intact rats (n=10); II – control (n=20); III – rats with Doxorubicin model (n=40). Doxorubicin was administered intraperitoneally at a dose of 5 mg/kg body weight once a week for 4 weeks. An animal control group was intraperitoneally injected with an equivalent volume of saline. Pulmonary tissue sampling for electron microscopic examination was performed under thiopental anesthesia 7, 14, 21, 28 days after the start of the experiment. Pieces of pulmonary tissue were fixed in 2.5% glutaraldehyde followed by fixation in 1% osmium tetroxide. After dehydration, the material was poured into araldite-epon. The sections obtained on a “Tesla BS-490” ultramicrotome were examined in an electron microscope “PEM-125K”. It is established that within 7 days after the first injection of Doxorubicin in the lungs changes in the structural organization of the hemomicrocapillary bed and the disturbance of blood rheological properties are determined, as evidenced by the excessive accumulation of neutrophils in the hemocapillaries, their adhesion and aggregation. With the extension of the study period (14-28 days) there is a progressive disturbance of the submicroscopic structure of hemocapillaries of the alveolar wall and marked changes in the rheological properties of blood. In endothelial cells, swelling phenomena with organelle disorganization are determined, and in some areas there is a desquamation of endothelial cells into the lumen of the hemocapillaries with basal membrane exposures. In the lumen of the microvessels, red blood cells and leuco-platelet aggregates are noted. Thus, the introduction of Doxorubicin leads to pronounced submicroscopic changes in the hemomicrocirculatory bed. Violation of the ultrastructural organization of the hemomicrocirculatory bed of the lungs is determined after 7 days after the start of the study.

Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


2019 ◽  
Vol 25 (3) ◽  
pp. 21-26
Author(s):  
Ye.V. Shaprynskyi

Scar strictures that lead to obstruction of the esophagus do not tend to decrease lately, but on the contrary, the number of such patients is increasing, which is caused by the use of a large range of chemicals in human life. The results of treatment of scarring strictures depend on the degree of stenosis. With complete obstruction of the esophagus, the question arises about conducting surgical treatment. Methods of correction of esophageal strictures have a considerable number of postoperative complications and lethal consequences – from 5.0 % to 15.0 %. Therefore, in order to create a unified pathogenetic tactic for the management and treatment of esophageal strictures, we were offered to study the ultrastructural changes of the mucous membrane of the stricture of the second stage during its modeling in the experiment. The purpose of the work is to investigate the dynamics of ultrastructural changes of the mucous membrane of the esophagus wall in the normal and second stage of its stricture. The experimental study was performed on adult white male rats weighing between 250 and 300 g. A total of 16 animals were operated on, which were divided into 2 groups: a control group (6 rats) and a study group (10 rats). The studies were performed under ketamine anesthesia. In animals of the control group performed only laparotomy, followed by layer-by-layer suturing of the anterior abdominal wall. In animals of the study group created a model of obstruction of the esophagus of the second stage. Electron microscopic examination was performed on days 3, 4, and 5 of the experiment, eliminating animals by overdosing on ketamine. As a result of the electron microscopic study of the ultrastructural organization of basal, spinosum, superficial epitheliocytes of stratified squamous epithelium without keratin, smooth muscle myocytes of the muscular plate and contractile elements of the muscular layer of the esophagus of rats with simulated stricture of the second degree revealed dystrophic and destructive disorders that varied in depth and severity. It was established that mitochondrial dysfunction leads to a decrease in the activity of reparative, metabolic and synthetic processes of the cell, which is indirectly manifested by a decrease in ribosomes and polysomes in the cytoplasm, loosening and focal lysis of membranes of the granular endoplasmic reticulum. Stricture of esophagus of the second stage causes activation of catabolic intracellular processes in all cells, which is morphologically confirmed by the appearance in the cytoplasm of secondary lysosomes and inclusions of lipids.


1998 ◽  
Vol 15 (3) ◽  
pp. 263-271 ◽  
Author(s):  
May H. El Samahy ◽  
Mohamed M. Ghoz ◽  
Naglaa Ramzy

Introduction: Chemical peeling involves the topical application of a wounding agent with the goal of effecting an organized regeneration of the skin. The histologic and ultrastructural features of actinic and age-related damage include structural abnormalities that disrupt normal epidermal and dermal architecture. The purpose of the present study is to evaluate the clinical and histologic effects of an enhanced medium-depth peel on photodamaged skin. We aimed to correlate the clinical and histologic findings with the ultrastructural changes occurring after the peel. These ultrastructural features are supposed to be more precise and informative than the clinical or histological response. They may also be employed as markers of peel response. Materials and Methods: In the present study, five patients with actinically damaged skin underwent enhanced medium-depth peels using 70% glycolic acid and 35% trichloracetic acid. Biopsy specimens were taken before the peel and 3 months after the peel for histologic and electron microscopic examination. Results: Clinical resolution of actinic damage corresponded with restoration of epidermal polarity. Characteristic histologic and ultrastructural features of the skin after peeling include markedly decreased epidermal intracytoplasmic vacuoles, decreased elastic fibers, increased activated fibroblasts, and organized parallel arrays of collagen fibrils. The diameters of individual fibrils are consistent with recent production of collagen by activated fibroblasts. Conclusion: Glycolic acid—tricholoro-acetic acid (GA-TCA) is an effective combination for a medium-depth peel in photodamaged skin both clinically and histologically. Electron microscopic studies following medium-depth peels reveal changes more profound than those seen histologically. The characteristic changes occurring in the keratinocytes, collagen, and elastic fibrils may be considered as guidelines or markers of the peel response.


Open Medicine ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. 745-751 ◽  
Author(s):  
Nilufer Kocak ◽  
Candan Ozogul ◽  
Suleyman Kaynak ◽  
Ulker Sonmez ◽  
Mehmet Zengin ◽  
...  

AbstractTo analyze the retinal toxicity of bevacizumab at various doses both in vitrectomized and non-vitrectomized rabbit models. Twenty- eight rabbits were included in the study. Twenty- four rabbits were assigned to six groups, with 4 of the rabbits in the control group. The animals in Groups 1, 2 and 3 received bevacizumab at a dose of 0.3 mg, 0.5 mg and 1.5 mg /eye, respectively. The rabbits in Groups 4, 5 and 6 received intravitreal bevacizumab of 0.3 mg, 0.5 mg and 1.5mg/eye, respectively, after gas compression vitrectomy. Two weeks after the procedure, the rabbits were euthanized. Retina tissue samples were then obtained and examined with both light and electron microscopes. In Groups 1, 2 and 3 after bevacizumab injection, toxic degeneration in the photoreceptor and retinal pigment epithelium cells was observed via electron microscopic examination. The findings in Groups 4 and 5 were normal as compared to the control group. In Group 6, toxicity in the bipolar neurons and photoreceptor cells was noticed. Increased toxicity and retinal penetration were noticed in all administered doses of bevacizumab in the presence of vitreous. In addition, ocular toxicity occurred through the injection of the highest dose of bevacizumab after vitrectomy. It is possible that the bevacizumab dose and the, vitreous are as important as the drug half-life in the vitreous.


1996 ◽  
Vol 33 (5) ◽  
pp. 542-550 ◽  
Author(s):  
N. Muniappa ◽  
G. E. Duhamel ◽  
M. R. Mathiesen ◽  
T. W. Bargar

Light microscopic and ultrastructural changes were observed in chicks challenged with North American Serpulina pilosicoli, a weakly β-hemolytic intestinal spirochete (WBHIS) associated with human and canine intestinal spirochetosis. Chicks in control groups received trypticase soy broth or canine Serpulina innocens. The birds were necropsied at weekly intervals, and the ceca were processed for bacteriologic and pathologic examinations. No WBHIS were isolated from the ceca of chicks in the control groups, but WBHIS with genotypes similar to the parent isolates were isolated from the ceca of chicks inoculated with human and canine S. pilosicoli. Gross examination revealed no significant changes in the ceca of chicks at any time post-inoculation. Light microscopic examination revealed no spirochetal attachment in the ceca of chicks in control groups. In contrast, focal to diffuse thickening of the brush border of the surface epithelium along with dilation of the crypt lumina and mild focal lamina propria heterophil infiltration were present in the ceca of chicks inoculated with human and canine S. pilosicoli. Scanning electron microscopic examination revealed focal to confluent spirochetal attachment mainly in the furrow region at the periphery of the crypt units. Transmission electron microscopic examination revealed spirochetes attached to the brush border of the cecal epithelium, causing effacement of the microvilli and disruption of the terminal web microfilaments. The cecal epithelium of chicks inoculated with the canine S. pilosicoli also had caplike elevations of the apical membrane at the point of attachment of the spirochetes together with large numbers of vesicles in the cytoplasm immediately beneath the terminal web and evidence of spirochetal invasion beyond the mucosal barrier. The changes observed suggested that the mechanism of attachment of human and canine S. pilosicoli to the cecal epithelium of chicks was analogous to but different from that described previously for other attaching and effacing gastroenteric bacterial pathogens of human beings and animals.


2010 ◽  
Vol 12 (3) ◽  
pp. 327-333 ◽  
Author(s):  
Baki S. Albayrak ◽  
Ozgur Ismailoglu ◽  
Konuralp Ilbay ◽  
Umut Yaka ◽  
Gamze Tanriover ◽  
...  

Object Epineural fibrosis may complicate peripheral nerve surgeries and currently is considered as one of the main factors responsible for failed surgeries. The authors investigated the postoperative antiscarring effects of topically applied doxorubicin (DXR) on rat sciatic nerves. Methods The sciatic nerves were dissected from the surrounding tissue and exposed bilaterally in 20 Wistar albino adult male rats. Abrasion trauma was produced on the exposed surface of the biceps femoris muscle in the vicinity of the sciatic nerves and their main branches in all animals. In the DXR Group, cottonoid pads soaked with DXR (0.5 mg/ml) were placed around the nerves for 5 minutes, whereas cotton pads soaked with saline (0.9% NaCl) were applied to nerves of animals in the Control Group for the same duration. Twelve weeks after the procedure, all of the rats were killed and the sciatic nerves were examined. Epineural adhesions were evaluated histopathologically and ultrastructurally. Additionally, quantitative histological parameters, the scar tissue formation index and the scar density, were calculated in histological evaluation. Results Gross postsurgical evaluation as well as histopathological and electron microscopic examination of involved nerve segments showed significantly less epineurial adhesions in the DXR Group than in the Control Group. Quantitative analysis of the epineurium revealed a statistically significant reduction in the density and amount of epineural scarring in specimens from the DXR Group than in those from the Control Group. Conlusions The results of gross postsurgical anatomical evaluation and histopathological and ultrastructural studies suggested that topical application of DXR effectively reduced epineural scar formation on rat sciatic nerves. These promising findings merit further experimental and clinical studies to determine the efficacy and safe applicability of DXR in human subjects.


1998 ◽  
Vol 66 (12) ◽  
pp. 5994-5998 ◽  
Author(s):  
Barbara E. Menzies ◽  
Iordanka Kourteva

ABSTRACT The ability of Staphylococcus aureus to invade and survive within endothelial cells is believed to contribute to its propensity to cause persistent endovascular infection with endothelial destruction. In the present study, we show that following invasion of human umbilical vein endothelial cells, intracellular S. aureus organisms remain viable over a 72-h period and, as determined by transmission electron microscopic examination, that the bacteria exist within vacuoles and free within the cytoplasm. We also demonstrate that endothelial cell death following S. aureusinvasion occurs at least in part by apoptosis as shown by DNA fragmentation and changes in nuclear morphology. Apoptotic changes were evident as early as 1 h after infection of endothelial cells. Internalization of S. aureus rather than adherence appears to be necessary, since use of the phagocytosis inhibitor cytochalasin D prevented apoptosis. UV-killed staphylococci, although retaining the capacity to be internalized, were not capable of inducing apoptosis, suggesting that apoptosis is dependent upon a factor associated with viable organisms. The studies demonstrate that viable intracellularS. aureus induces apoptosis of endothelial cells and that internalized staphylococci can exist free within the cytoplasm.


2019 ◽  
pp. 61-67
Author(s):  
M. N. Kurbat ◽  
R. I. Kravchuk ◽  
O. B. Ostrovskaya

Objective: to study the microscopic and ultrastructural changes in the liver of rats exposed to AZT. Material and methods. The histological and electron microscopic examination of the liver samples with mitochondrial morphometry has been performed. Results . The 7-day administration of AZT does not cause any significant structural changes in the liver. The exposure to the drug for 21 days leads to the development of moderate inflammatory and degenerative processes in the liver, including changes in the structure of hepatocyte mitochondria. Conclusion. One of the pathogenetic mechanisms of the hepatotoxic effect of AZT is its impact on the structural and functional properties of hepatocyte mitochondria.


Sign in / Sign up

Export Citation Format

Share Document