Non Invasive Failure Analysis of Passive Electronic Devices in Wireless Modules Using X-ray Micro Tomography (MicroCT)

Author(s):  
Tyler Pendleton ◽  
Luke Hunter ◽  
S. H. Lau

Abstract Conventional microCTs or 3D x-ray upgrades from existing 2D x-ray systems have two major drawbacks when they are used for failure analysis of advanced packages: Insufficient resolution to image small (1 to 5 microns) materials and the lack of imaging contrast to visualize cracks, whiskers, and defects within low Z materials. This paper discusses some of the failure analysis (FA) case studies of wireless modules using a high resolution micro x-ray CT (XCT). These examples show the value of high resolution XCT as a novel approach to some common package level defects, including some interesting case examples, where failure mechanisms have been uncovered which could not have been done, using conventional means. The non-invasive FA technique for RF modules technique has been shown to dramatically improve the FA engineers' chances of identifying defects over conventional 2D x-rays and avoid the need for physical and tedious cross sectioning of these devices.

2003 ◽  
Vol 255 (1) ◽  
pp. 351-359 ◽  
Author(s):  
P.J. Gregory ◽  
D. J. Hutchison ◽  
D. B. Read ◽  
P. M. Jenneson ◽  
W. B. Gilboy ◽  
...  

2020 ◽  
Author(s):  
Sifat Ahmed ◽  
Tonmoy Hossain ◽  
Oishee Bintey Hoque ◽  
Sujan Sarker ◽  
Sejuti Rahman ◽  
...  

Abstract Background/ introduction: The pandemic, originated by novel coronavirus 2019 (COVID-19), continuing its devastating effect on the health, well-being, and economy of the global population. A critical step to restrain this pandemic is the early detection of COVID-19 in the human body to constraint the exposure and control the spread of the virus. Chest X-Rays are one of the non-invasive tools to detect this disease as the manual PCR diagnosis process is quite tedious and time-consuming. Our intensive background studies show that, the works till now are not efficient to produce an unbiased detection result.Method: In this work, we propose an automated COVID-19 classification method, utilizing available COVID and non-COVID X-Ray datasets, along with High Resolution Network (HRNet) for feature extraction embedding with the UNet for segmentation purposes.Results: To evaluate the proposed method, several baseline experiments have been performed employing numerous deep learning architectures. With extensive experiment, we got a significant result of 99.26% accuracy, 98.53% sensitivity, and 98.82% specificity with HRNet which surpasses the performances of the existing models.Conclusions: Finally, we conclude that our proposed methodology ensures unbiased high accuracy, which increases the probability of incorporating X-Ray images into the diagnosis of the disease.


2015 ◽  
Vol 22 (4) ◽  
pp. 1049-1055 ◽  
Author(s):  
Rhiannon P. Murrie ◽  
Kaye S. Morgan ◽  
Anton Maksimenko ◽  
Andreas Fouras ◽  
David M. Paganin ◽  
...  

The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s−1allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.


Author(s):  
P. J. Gregory ◽  
D. J. Hutchison ◽  
D. B. Read ◽  
P. M. Jenneson ◽  
W. B. Gilboy ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 98344-98349 ◽  
Author(s):  
Andreas Späth ◽  
Fan Tu ◽  
Florian Vollnhals ◽  
Martin Drost ◽  
Sandra Krick Calderón ◽  
...  

In a novel approach a high-resolution soft X-ray microscope has been applied to generate metallic nanostructures by X-ray beam induced decomposition of precursor molecules supplied from the gas phase.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


1998 ◽  
Vol 5 (3) ◽  
pp. 515-517 ◽  
Author(s):  
M. Frank ◽  
C. A. Mears ◽  
S. E. Labov ◽  
L. J. Hiller ◽  
J. B. le Grand ◽  
...  

Experimental results are presented obtained with a cryogenically cooled high-resolution X-ray spectrometer based on a 141 × 141 µm Nb-Al-Al2O3-Al-Nb superconducting tunnel junction (STJ) detector in an SR-XRF demonstration experiment. STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft X-rays. By measuring fluorescence X-rays from samples containing transition metals and low-Z elements, an FWHM energy resolution of 6–15 eV for X-rays in the energy range 180–1100 eV has been obtained. The results show that, in the near future, STJ detectors may prove very useful in XRF and microanalysis applications.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


1991 ◽  
Vol 01 (03) ◽  
pp. 251-258 ◽  
Author(s):  
M. TERASAWA

K, L, and M X-rays in the wavelengths between 6Å and 130Å generated by the bombardment of 200 keV protons and other heavy ions were measured by means of a wavelength dispersive Bragg’s spectrometer. The X-ray peak intensity was fairly high in general, while the background was very low. The technique was favorably applied to a practical analysis of several light elements (Be, B, C, N, O, and F). Use of moderate-energy heavy ions considering the wavelength selectivity in X-ray generation was effective for the element analysis. The high-resolution spectrometry in the analytical application of ion-induced X-ray generation was found to be useful for the study of fine electronic structure, e.g. satellite and hypersatellite X-ray study, and of the chemical state of materials.


Author(s):  
Marta M. Civitani ◽  
Stefano Basso ◽  
Salvatore Incorvaia ◽  
Luigi Lessio ◽  
Giovanni Pareschi ◽  
...  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document