Physical Failure Analysis Techniques Using 3D Rotation Imaging Method by STEM

Author(s):  
Tae-Sun Back ◽  
Jong-Hyeop Kim ◽  
Soon-Ju Lee ◽  
Jin-Woo Jung ◽  
Te-O Jung ◽  
...  

Abstract Scanning electron microscope (SEM) and high resolution transmission electron microscope analysis combined with focused ion beam have been used to locate the physical defect. Visualizing the defect by these techniques was found to be difficult. This paper introduces a novel physical failure analysis technique using 3D rotation STEM imaging. It describes the electrical method of analyzing the cause of failure. Trying to determine with 2D imaging if the defect was a crystalline or not was problematical. To resolve the issue, a pillar type of specimen was made by utilizing a 3D rotation holder and observed with the sample from different directions. Results confirmed that the generation of dislocations can occur according to the variation of the stress transferred to the bulk Si. The variation was due to stress intensity and pattern isolation as a function of the film volume of spin on dielectric material and shallow trench isolation size.

Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


Author(s):  
Julien Goxe ◽  
Béatrice Vanhuffel ◽  
Marie Castignolles ◽  
Thomas Zirilli

Abstract Passive Voltage Contrast (PVC) in a Scanning Electron Microscope (SEM) or a Focused Ion Beam (FIB) is a key Failure Analysis (FA) technique to highlight a leaky gate. The introduction of Silicon On Insulator (SOI) substrate in our recent automotive analog mixed-signal technology highlighted a new challenge: the Bottom Oxide (BOX) layer, by isolating the Silicon Active Area from the bulk made PVC technique less effective in finding leaky MOSFET gates. A solution involving sample preparation performed with standard FA toolset is proposed to enhance PVC on SOI substrate.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


2010 ◽  
Vol 16 (S2) ◽  
pp. 214-215
Author(s):  
T Tanigaki ◽  
K Ito ◽  
K Nakamura ◽  
Y Nagakubo ◽  
J Azuma ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2000 ◽  
Vol 6 (5) ◽  
pp. 452-462 ◽  
Author(s):  
Julie M. Cairney ◽  
Robert D. Smith ◽  
Paul R. Munroe

AbstractTransmission electron microscope samples of two types of metal matrix composites were prepared using both traditional thinning methods and the more novel focused ion beam miller. Electropolishing methods were able to produce, very rapidly, thin foils where the matrix was electron transparent, but the ceramic reinforcement particles remained unthinned. Thus, it was not possible in these foils to study either the matrix-reinforcement interface or the microstructure of the reinforcement particles themselves. In contrast, both phases in the composites prepared using the focused ion beam miller thinned uniformly. The interfaces in these materials were clearly visible and the ceramic reinforcement was electron transparent. However, microstructural artifacts associated with ion beam damage were also observed. The extent of these artifacts and methods of minimizing their effect were dependent on both the materials and the milling conditions used.


2011 ◽  
Vol 17 (6) ◽  
pp. 889-895 ◽  
Author(s):  
Lynne M. Gignac ◽  
Surbhi Mittal ◽  
Sarunya Bangsaruntip ◽  
Guy M. Cohen ◽  
Jeffrey W. Sleight

AbstractThe ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.


1998 ◽  
Vol 4 (S2) ◽  
pp. 856-857
Author(s):  
David M. Longo ◽  
James M. Howe ◽  
William C. Johnson

The focused ion beam (FIB) has become an indispensable tool for a variety of applications in materials science, including that of specimen preparation for the transmission electron microscope (TEM). Several FIB specimen preparation techniques have been developed, but some problems result when FIB specimens are analyzed in the TEM. One of these is X-ray fluorescence from bulk material surrounding the thin membrane in FIB-prepared samples. This paper reports on a new FIB specimen preparation method which was devised for the reduction of X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) in the TEM.Figure 1 shows three membrane geometries that were investigated in this study on a single-crystal Si substrate with a RF sputter-deposited 50 nm Ni film. Membrane 1 is the most commonly reported geometry in the literature, with an approximately 20 urn wide trench and a membrane having a single wedge with a 1.5° incline.


Sign in / Sign up

Export Citation Format

Share Document