scholarly journals Micro- and nano-structural details of a spider's filter for substrate vibrations: relevance for low-frequency signal transmission

2015 ◽  
Vol 12 (104) ◽  
pp. 20141111 ◽  
Author(s):  
Maxim Erko ◽  
Osnat Younes-Metzler ◽  
Alexander Rack ◽  
Paul Zaslansky ◽  
Seth L. Young ◽  
...  

The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. The mechanical properties were investigated using scanning acoustic microscopy and nanoindentation. We show that large tarsal deflections cause large deformation in the distal highly hydrated part of the pad. Beyond this region, a sclerotized region serves as a supporting frame which resists the deformation and is displaced to push against the slits, with displacement values considerably scaled down to only a few micrometres. Unravelling the structural arrangement in such specialized structures may provide conceptual ideas for the design of new materials capable of controlling a technical sensor's specificity and selectivity, which is so typical of biological sensors.

Author(s):  
Katherine V. Whittington

Abstract The electronics supply chain is being increasingly infiltrated by non-authentic, counterfeit electronic parts, whose use poses a great risk to the integrity and quality of critical hardware. There is a wide range of counterfeit parts such as leads and body molds. The failure analyst has many tools that can be used to investigate counterfeit parts. The key is to follow an investigative path that makes sense for each scenario. External visual inspection is called for whenever the source of supply is questionable. Other methods include use of solvents, 3D measurement, X-ray fluorescence, C-mode scanning acoustic microscopy, thermal cycle testing, burn-in technique, and electrical testing. Awareness, vigilance, and effective investigations are the best defense against the threat of counterfeit parts.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2950
Author(s):  
Hongwei Song ◽  
Xinle Li

The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.


2021 ◽  
pp. 096739112199822
Author(s):  
Ahmed I Abou-Kandil ◽  
Gerhard Goldbeck

Studying the crystalline structure of uniaxially and biaxially drawn polyesters is of great importance due to their wide range of applications. In this study, we shed some light on the behaviour of PET and PEN under uniaxial stress using experimental and molecular modelling techniques. Comparing experiment with modelling provides insights into polymer crystallisation with extended chains. Experimental x-ray diffraction patterns are reproduced by means of models of chains sliding along the c-axis leading to some loss of three-dimensional order, i.e. moving away from the condition of perfect register of the fully extended chains in triclinic crystals of both PET and PEN. This will help us understand the mechanism of polymer crystallisation under uniaxial stress and the appearance of mesophases in some cases as discussed herein.


Author(s):  
Satenik Harutyunyan ◽  
Davresh Hasanyan

A non-linear theoretical model including bending and longitudinal vibration effects was developed for predicting the magneto electric (ME) effects in a laminate bar composite structure consisting of magnetostrictive and piezoelectric multi-layers. If the magnitude of the applied field increases, the deflection rapidly increases and the difference between experimental results and linear predictions becomes large. However, the nonlinear predictions based on the present model well agree with the experimental results within a wide range of applied electric field. The results of the analysis are believed to be useful for materials selection and actuator structure design of actuator in actuator fabrication. It is shown that the problem for bars of symmetrical structure is not divided into a plane problem and a bending problem. A way of simplifying the solution of the problem is found by an asymptotic method. After solving the problem for a laminated bar, formula that enable one to change from one-dimensional required quantities to three dimensional quantities are obtained. The derived analytical expression for ME coefficients depend on vibration frequency and other geometrical and physical parameters of laminated composites. Parametric studies are presented to evaluate the influences of material properties and geometries on strain distribution and the ME coefficient. Analytical expressions indicate that the vibration frequency strongly influences the strain distribution in the laminates, and that these effects strongly influence the ME coefficients. It is shown that for certain values of vibration frequency (resonance frequency), the ME coefficient becomes infinity; as a particular case, low frequency ME coefficient were derived as well.


2019 ◽  
Vol 9 (17) ◽  
pp. 3540 ◽  
Author(s):  
Ferdows Afghah ◽  
Caner Dikyol ◽  
Mine Altunbek ◽  
Bahattin Koc

Melt electrospinning writing has been emerged as a promising technique in the field of tissue engineering, with the capability of fabricating controllable and highly ordered complex three-dimensional geometries from a wide range of polymers. This three-dimensional (3D) printing method can be used to fabricate scaffolds biomimicking extracellular matrix of replaced tissue with the required mechanical properties. However, controlled and homogeneous cell attachment on melt electrospun fibers is a challenge. The combination of melt electrospinning writing with other tissue engineering approaches, called hybrid biomanufacturing, has introduced new perspectives and increased its potential applications in tissue engineering. In this review, principles and key parameters, challenges, and opportunities of melt electrospinning writing, and particularly, recent approaches and materials in this field are introduced. Subsequently, hybrid biomanufacturing strategies are presented for improved biological and mechanical properties of the manufactured porous structures. An overview of the possible hybrid setups and applications, future perspective of hybrid processes, guidelines, and opportunities in different areas of tissue/organ engineering are also highlighted.


2019 ◽  
Vol 34 (2) ◽  
pp. 97-102
Author(s):  
M. A. Rodriguez ◽  
T. T. Amon ◽  
J. J. M. Griego ◽  
H. Brown-Shaklee ◽  
N. Green

Advancements in computer technology have enabled three-dimensional (3D) reconstruction, data-stitching, and manipulation of 3D data obtained on X-ray imaging systems such as micro-computed tomography (μ-CT). Likewise, intuitive evaluation of these 3D datasets can be enhanced by recent advances in virtual reality (VR) hardware and software. Additionally, the generation, viewing, and manipulation of 3D X-ray diffraction datasets, such as pole figures employed for texture analysis, can also benefit from these advanced visualization techniques. We present newly-developed protocols for porting 3D data (as TIFF-stacks) into a Unity gaming software platform so that data may be toured, manipulated, and evaluated within a more-intuitive VR environment through the use of game-like controls and 3D headsets. We demonstrate this capability by rendering μ-CT data of a polymer dogbone test bar at various stages of in situ mechanical strain. An additional experiment is presented showing 3D XRD data collected on an aluminum test block with vias. These 3D XRD data for texture analysis (χ, ϕ, 2θ dimensions) enables the viewer to visually inspect 3D pole figures and detect the presence or absence of in-plane residual macrostrain. These two examples serve to illustrate the benefits of this new methodology for multidimensional analysis.


2019 ◽  
Vol 809 ◽  
pp. 587-593
Author(s):  
Simon Zabler ◽  
Katja Schladitz ◽  
Kilian Dremel ◽  
Jonas Graetz ◽  
Dascha Dobrovolskij

To detect and characterize materials defects in fiber composites as well as for evaluatingthe three-dimensional local fiber orientation in the latter, X-ray micro-CT is the preferred methodof choice. When micro computed tomography is applied to inspect large components, the method isreferred to as region-of-interest computed tomography. Parts can be as large as 10 cm wide and 1 mlong, while the measurement volume of micro computed tomography is a cylinder of only 4 − 5 mmdiameter (typical wall thickness of fiber composite parts). In this report, the potentials and limits ofregion-of-interest computed tomography are discussed with regard to spatial resolution and precisionwhen evaluating defects and local fiber orientation in squeeze cast components. The micro computedtomography scanner metRIC at Fraunhofer‘s Development Center X-ray Technology EZRT deliversregion-of-interest computed tomography up to a spatial resolution of 2 μm/voxel, which is sufficientfor determining the orientation of natural or synthetic fibers, wood, carbon and glass. The mean localfiber orientation is estimated on an isotropic structuring element of approximately 0.1 mm length bymeans of volume image analysis (MAVI software package by Fraunhofer ITWM). Knowing the exactlocal fiber orientation is critical for estimating anisotropic thermal conductivity and materials strength.


2011 ◽  
Vol 57 (205) ◽  
pp. 811-816 ◽  
Author(s):  
Emilie Zermatten ◽  
Sophia Haussener ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

AbstractA tomography-based methodology for the mass transport characterization of snow is presented. Five samples, characteristic for a wide range of seasonal snow, are considered. Their three-dimensional (3-D) geometrical representations are obtained by micro-computed tomography and used in direct pore-level simulations to numerically solve the governing mass and momentum conservation equations, allowing for the determination of their effective permeability and Dupuit–Forchheimer coefficient. The extension to the Dupuit–coefficient is useful near the snow surface, where Reynolds numbers higher than unity can appear. Simplified semi-empirical models of porous media are also examined. The methodology presented allows for the determination of snow’s effective mass transport properties, which are strongly dependent on the snow microstructure and morphology. These effective properties can, in turn, readily be used in snowpack volume-averaged (continuum) models such as strongly layered samples with macroscopically anisotropic properties.


2019 ◽  
Vol 56 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Louis King ◽  
Abdelmalek Bouazza ◽  
Anton Maksimenko ◽  
Will P. Gates ◽  
Stephen Dubsky

The measurement of displacement fields by nondestructive imaging techniques opens up the potential to study the pre-failure mechanisms of a wide range of geotechnical problems within physical models. With the advancement of imaging technologies, it has become possible to achieve high-resolution three-dimensional computed tomography volumes of relatively large samples, which may have previously resulted in excessively long scan times or significant imaging artefacts. Imaging of small-scale model piled embankments (142 mm diameter) comprising sand was undertaken using the imaging and medical beamline at the Australian Synchrotron. The monochromatic X-ray beam produced high-resolution reconstructed volumes with a fine texture due to the size and mineralogy of the sand grains as well as the phase contrast enhancement achieved by the monochromatic X-ray beam. The reconstructed volumes were well suited to the application of digital volume correlation, which utilizes cross-correlation techniques to estimate three-dimensional full-field displacement vectors. The output provides insight into the strain localizations that develop within piled embankments and an example of how advanced imaging techniques can be utilized to study the kinematics of physical models.


Sign in / Sign up

Export Citation Format

Share Document