Techniques for Reverse Engineering and Functionality Extraction of Mixed-Signal ICs for Security Applications

Author(s):  
Franco Stellari ◽  
Chung-Ching Lin ◽  
Lynne Gignac ◽  
Raphael Robertazzi ◽  
Alan Weger ◽  
...  

Abstract In this paper, we discuss a set of techniques and analysis methodologies for the reverse engineering and functionality extraction of complex mixed-signal ICs with a special focus for security applications. Front and back side reflected light pattern images at different magnifications are used to identify circuit blocks. Time-integrated and time-resolved photon emission data is used to identify gate logic states, sequences of events, and specific functional activity. Backscattered electron and scanning transmission electron images mosaics are used to reverse engineer individual gates and observe local interconnects. Thermal imaging is used to aid in the functional block identification and analog gates analysis. Different advanced methodologies for tool automation, focusing, mapping, and image processing are also discussed in the context of our proposed electro-optical tester based technique.

Author(s):  
J.A. Kash ◽  
J.C. Tsang ◽  
D.R. Knebel ◽  
D.P. Vallett

Abstract A noninvasive backside probe of integrated circuits has been developed. This new probe can diagnose at-speed failures, stuck faults, and other defects. Because it is a highly parallel imaging technique, faults may be isolated which are difficult to locate by other methods. This optical technique has been named “PICA”, for picosecond imaging circuit analysis. PICA relies on the fact that an FET in a CMOS circuit emits a picosecond pulse of light each time the logic gate changes state. The source of this emission is explained. The PICA technique, which combines optical imaging of the emission with picosecond time-resolution, is described. Because of the imaging, time-resolved emission data is acquired for many transistors in parallel. The use of the emission for failure analysis and AC characterization of integrated circuits is demonstrated. Because the emission can be detected from either the front or back side of the chip, it can be used for both front and back side analysis.


Author(s):  
Jim Vickers ◽  
Nader Pakdaman ◽  
Steven Kasapi

Abstract Dynamic hot-electron emission using time-resolved photon counting can address the long-term failure analysis and debug requirements of the semiconductor industry's advanced devices. This article identifies the detector performance parameters and components that are required to scale and keep pace with the industry's requirements. It addresses the scalability of dynamic emission with the semiconductor advanced device roadmap. It is important to understand the limitations to determining that a switching event has occurred. The article explains the criteria for event detection, which is suitable for tracking signal propagation and looking for logic or other faults in which timing is not critical. It discusses conditions for event timing, whose goal is to determine accurately when a switching event has occurred, usually for speed path analysis. One of the uses of a dynamic emission system is to identify faults by studying the emission as a general function of time.


Author(s):  
B.J. Cain ◽  
G.L. Woods ◽  
A. Syed ◽  
R. Herlein ◽  
Toshihiro Nomura

Abstract Time-Resolved Emission (TRE) is a popular technique for non-invasive acquisition of time-domain waveforms from active nodes through the backside of an integrated circuit. [1] State-of-the art TRE systems offer high bandwidths (> 5 GHz), excellent spatial resolution (0.25um), and complete visibility of all nodes on the chip. TRE waveforms are typically used for detecting incorrect signal levels, race conditions, and/or timing faults with resolution of a few ps. However, extracting the exact voltage behavior from a TRE waveform is usually difficult because dynamic photon emission is a highly nonlinear process. This has limited the perceived utility of TRE in diagnosing analog circuits. In this paper, we demonstrate extraction of voltage waveforms in passing and failing conditions from a small-swing, differential logic circuit. The voltage waveforms obtained were crucial in corroborating a theory for some failures inside an 0.18um ASIC.


2015 ◽  
Vol 21 (4) ◽  
pp. 1026-1033 ◽  
Author(s):  
Li He ◽  
Pei Zhang ◽  
Matthew F. Besser ◽  
Matthew Joseph Kramer ◽  
Paul M. Voyles

AbstractElectron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature Tg and the crystallization temperature, Tx. τ determined from the mean diffraction intensity autocorrelation function g2(t) decreases with temperature following an Arrhenius relationship between Tg and Tg+25 K, and then increases as temperature approaches Tx. The distribution of τ determined from the g2(t) of single speckles is broad and changes significantly with temperature.


2019 ◽  
Vol 17 (08) ◽  
pp. 1941011
Author(s):  
Catalina Curceanu ◽  
Raffaele Del Grande ◽  
Matthias Laubenstein ◽  
Kristian Piscicchia

Collapse models consist in dynamical reformulations of the standard quantum mechanics aiming to solve the measurement problem. The standard Schrödinger dynamics is modified with the introduction of nonlinear and stochastic terms, which induce the wave function collapse in space. Collapse models predict slight deviations from the standard quantum mechanics predictions, in particular the emission of a “spontaneous radiation”, which we explored to set the most stringent limits on the collapse models parameters in a broad range. To this end, the X-ray emission data collected by the IGEX collaboration are analyzed and compared with the spectrum of the spontaneous photon emission process predicted by the theories. The results of the data analyses, and the ongoing experimental efforts will be presented.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1663
Author(s):  
Kwang-Yong Jeong ◽  
Seong Won Lee ◽  
Jae-Hyuck Choi ◽  
Jae-Pil So ◽  
Hong-Gyu Park

Efficient integration of a single-photon emitter with an optical waveguide is essential for quantum integrated circuits. In this study, we integrated a single-photon emitter in a hexagonal boron nitride (h-BN) flake with a Ag plasmonic waveguide and measured its optical properties at room temperature. First, we performed numerical simulations to calculate the efficiency of light coupling from the emitter to the Ag plasmonic waveguide, depending on the position and polarization of the emitter. In the experiment, we placed a Ag nanowire, which acted as the plasmonic waveguide, near the defect of the h-BN, which acted as the single-photon emitter. The position and direction of the nanowire were precisely controlled using a stamping method. Our time-resolved photoluminescence measurement showed that the single-photon emission from the h-BN flake was enhanced to almost twice the intensity as a result of the coupling with the Ag nanowire. We expect these results to pave the way for the practical implementation of on-chip nanoscale quantum plasmonic integrated circuits.


Author(s):  
Matthew C. Reichert ◽  
Brendan Turnbull ◽  
David J. Hagan ◽  
Eric Van Stryland

2009 ◽  
Vol 16 (2) ◽  
pp. 307-309 ◽  
Author(s):  
G. K. Auernhammer ◽  
K. Fauth ◽  
B. Ullrich ◽  
J. Zhao ◽  
M. Weigand ◽  
...  

Of all the current detection techniques with nanometre resolution, only X-ray microscopy allows imaging of nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying the response to mechanical stimuli, the challenge lies in its application with a precision comparable with the spatial resolution. In the first shear experiments performed in an X-ray microscope, this has been accomplished by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope. Thus shear-induced re-organization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.


1989 ◽  
Vol 4 (5) ◽  
pp. 1272-1279 ◽  
Author(s):  
S. C. Langford ◽  
Ma Zhenyi ◽  
J. T. Dickinson

Photon emission accompanying the fracture of an epoxy and single crystal MgO is examined for evidence of deterministic chaos by means of the autocorrelation function, the Fourier transform, the correlation integral of Grassberger and Procaccia, and the fractal box dimension. A positive Lyapunov exponent is also obtained from the epoxy phE data. Each of these measures is consistent with a significant degree of deterministic chaos associated with attractors of relatively low dimension. A typical epoxy fracture surface was analyzed for fractal character by means of the slit island technique, yielding a fractal dimension of 1.32 ± 0.03. The fractal dimensions of the fracture surface and the photon emission data (box dimension) of the epoxy are in good agreement. These observations suggest that fluctuations in photon emission intensity during fracture reflect the production of fractal surface features as they are being produced and thus provide important information on the process of dynamic crack growth.


2013 ◽  
Vol 21 (3) ◽  
pp. 30-35
Author(s):  
Douglas Martin ◽  
Samuel Beilin ◽  
Brett Hamilton ◽  
Darin York ◽  
Philip Baker ◽  
...  

Failure analysis is important in determining root cause for appropriate corrective action. In order to perform failure analysis of microelectronic application-specific integrated circuits (ASICs) delidding the device is often required. However, determining root cause from the front side is not always possible due to shadowing effects caused by the ASIC metal interconnects. Therefore, back-side polishing is used to reveal an unobstructed view of the ASIC silicon transistors. This paper details how back-side polishing in conjunction with laser-scanned imaging (LSI), laser voltage imaging (LVI), laser voltage probing (LVP), photon emission microscopy (PEM), and laser-assisted device alterations (LADA) were used to uncover the root cause of failure of two ASICs.


Sign in / Sign up

Export Citation Format

Share Document