Advanced Tools and Techniques for Delayering and Cross-Sectioning Semiconductor Devices

Author(s):  
P. Nowakowski ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Conventional mechanical sample preparation is a difficult and uncontrolled process that does not allow targeting of a specific depth or layer. Because of the difficulties presented by mechanical sample preparation, there has been an emergence of beam-based techniques for device delayering applications. Cross-sectioning is another commonly used technique used in microelectronics industry investigations; when combined with delayering, one can gain complete knowledge about a device's faults. This paper presents a development in semiconductor device investigation using low energy, broad-beam argon ion milling. The results highlight that broad-beam Ar ion milling produces excellent surface quality, which allows high resolution scanning electron microscope observation and energy dispersive spectrometry analyses, even at low energy.

2009 ◽  
Author(s):  
Heiko Stegmann ◽  
Yvonne Ritz ◽  
Dirk Utess ◽  
René Hübner ◽  
Ehrenfried Zschech ◽  
...  

Author(s):  
Liew Kaeng Nan ◽  
Lee Meng Lung

Abstract Conventional FIB ex-situ lift-out is the most common technique for TEM sample preparation. However, the scaling of semiconductor device structures poses great challenge to the method since the critical dimension of device becomes smaller than normal TEM sample thickness. In this paper, a technique combining 30 keV FIB milling and 3 keV ion beam etching is introduced to prepare the TEM specimen. It can be used by existing FIBs that are not equipped with low-energy ion beam. By this method, the overlapping pattern can be eliminated while maintaining good image quality.


2009 ◽  
Vol 15 (S2) ◽  
pp. 170-171 ◽  
Author(s):  
H Stegmann ◽  
Y Ritz ◽  
D Utess ◽  
H-J Engelmann ◽  
E Zschech
Keyword(s):  

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2006 ◽  
Vol 26 ◽  
pp. 223-226 ◽  
Author(s):  
J Scott ◽  
F T Docherty ◽  
M MacKenzie ◽  
W Smith ◽  
B Miller ◽  
...  

2016 ◽  
Vol 850 ◽  
pp. 722-727 ◽  
Author(s):  
Hui Wang ◽  
Shang Gang Xiao ◽  
Qiang Xu ◽  
Tao Zhang ◽  
Henny Zandbergen

The preparation of thin lamellas by focused ion beam (FIB) for MEMS-based in situ TEM experiments is time consuming. Typically, the lamellas are of ~5μm*10μm and have a thickness less than 100nm. Here we demonstrate a fast lamellas’ preparation method using special fast cutting by FIB of samples prepared by conventional TEM sample preparation by argon ion milling or electrochemical polishing methods. This method has been applied successfully on various materials, such as ductile metallic alloy Ti68Ta27Al5, brittle ceramics K0.5Na0.5NbO3-6%LiNbO3 and semiconductor Si. The thickness of the lamellas depends on the original TEM sample.


1997 ◽  
Vol 480 ◽  
Author(s):  
T. Kouzaki ◽  
K. Yoshioka ◽  
E. Ohno

AbstractIt is very difficult to prepare cross-sectional TEM samples for phase-change optical disks by conventional argon ion milling because of the difference of ion milling rates between multilayers and the polymer substrate. We have been successful in preparing samples of those optical disks by ion milling method with dissolution of the polymer substrate in advance. The cross-sectional structure was observed more clearly in this method rather than in ultramicrotome method.


1998 ◽  
Vol 4 (S2) ◽  
pp. 656-657 ◽  
Author(s):  
David W. Susnitzky ◽  
Kevin D. Johnson

The ongoing reduction of scale of semiconductor device structures places increasing demands on the sample preparation methods used for transmission electron microscopy (TEM). Much of the semiconductor industry's failure analysis and new process development effort requires specific transistor, metal or dielectric structures to be analyzed using TEM techniques. Focused ion beam (FIB) milling has emerged as a valuable technique for site-specific TEM sample preparation. FIB milling, typically with 25-50kV Ga+ ions, enables thin TEM samples to be prepared with submicron precision. However, Ga+ ion milling significantly modifies the surfaces of TEM samples by implantation and amorphization. Previous work using 90° milling angles has shown that Ga+ ion milling of Si produces a surface damage layer that is 280Å thick. This damage is problematical since the current generation of semiconductor devices requires TEM samples in the 500-1000Å thickness range.


Sign in / Sign up

Export Citation Format

Share Document