scholarly journals Fast and Effective Sample Preparation Technique for Backside Fault Isolation on GaN Packaged Devices

Author(s):  
Tony Colpaert ◽  
Stefaan Verleye

Abstract This paper describes a fast and effective sample preparation method to allow backside fault localization on GaN package devices. Backside analysis by Photon Emission Microscopy (PEM) is becoming preferable to frontside analysis when the die is covered by metal layers. This paper describes an optimized method for backside sample preparation on GaN package devices having a thick heavily doped p-type silicon substrate. The method combines mechanical and chemical deprocessing steps, resulting in a fast and effective sample preparation technique for PEM analysis. Additionally, the laser marking process parameters to facilitate orientation during the final physical failure analysis by Focused Ion Beam (FIB) are also shared.

Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione ◽  
...  

Abstract Fast and accurate examination from the bulk to the specific area of the defect in advanced semiconductor devices is critical in failure analysis. This work presents the use of Ar ion milling methods in combination with Ga focused ion beam (FIB) milling as a cutting-edge sample preparation technique from the bulk to specific areas by FIB lift-out without sample-preparation-induced artifacts. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 15 nm are obtained.


2009 ◽  
Vol 633-634 ◽  
pp. 73-84
Author(s):  
Deng Pan ◽  
S. Kuwano ◽  
T. Fujita ◽  
M. W. Chen

Ultra-large compressive plasticity at room temperature has recently been observed in electrodeposited nanocrystalline nickel (nc-Ni) under micro-scale compression (Pan, Kuwano, Fujita and Chen: Nano Lett. Vol. 7 (2007), p. 2108). With aid of a TEM sample preparation technique employing focused ion beam (FIB), TEM observations on deformed nc-Ni evidenced deformation-induced microstructural evolution of nc-Ni at a variety of strain levels: Whilst the deformation increases, substantial grain growth is uncovered in the nc-Ni. No apparent ex situ evidence of intragranular dislocation activities is found in the deformed sample. As thermal diffusion plays an insignificant role in the deformation in nc-Ni at room temperature (~0.17Tm), this premium plasticity is achieved in accommodation with the grain-boundary-mediated deformation, with assistance of extensive grain growth that is mainly driven by high stresses at steady plastic flow.


Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

A primary concern involving transmission electron microscopy (TEM) analysis is whether the electron transparent region under investigation is representative of the bulk material. TEM is frequently employed to examine the microstructure of electrodeposited materials due to their small grain size and high dislocation density. Previous work in this laboratory on palladium electrodeposits has shown that deformation twins and diffusion induced recrystallization may be induced during preparation of thin foils using both twin jet electropolishing and ion beam thinning. Recent developments in TEM sample preparation in the physical sciences include a procedure for the cross-section of heterogeneous layered materials which reduces or eliminates the need for ion milling. In this sample preparation technique, a tripod polisher device is used to mechanically polish the specimen to electron transparency. The purpose of this paper is to report on the influence of the tripod polisher sample preparation technique, on the microstructure of zinc electrodeposits.


Author(s):  
Douglas J. Martin ◽  
Matthew J. Gadlage ◽  
Wai-Yat Leung ◽  
Jeffrey L. Titus

Abstract An application-specific integrated circuit (ASIC) for a high reliability application is found to have a missing sidewall spacer in a single transistor. Manufacturer burn-in and standard component electrical tests do not capture this defect. The defect manifests after exposure to ionizing radiation. Photon emission microscopy (PEM), laser voltage imaging (LVI), and laserassisted device alteration (LADA) are used to isolate the failure site. At the failure site a focused ion beam (FIB) cross section indicates that a doubly doped drain (DDD) (N+) is likely present where a lightly doped drain (LDD) is designated. This defect leads to a failure mode that is consistent with hot-carrier injection in complementary metal-oxide semiconductor (CMOS) transistors. This paper presents the testability from a fault isolation aspect, shmoo plot characterization, and backside optical techniques to identify its spatial location. A discussion of the results includes why ionizing radiation allowed the defect’s capture and potential implications of using ionizing radiation as a viable failure analysis technique.


Author(s):  
Fayik M. Bundhoo ◽  
Soundaranathan Kasivisvanatha

Abstract A novel failure analysis approach has been developed to isolate and characterize deep sub micron defects in P<100>- silicon lattice. This technique utilizes unique wet chemical deprocessing and side wall cleaning in conjunction with focused ion beam milling to isolate a single vertical failing DMOS source contact from a parallel array of 462K contacts covered with oxide dielectric and top metal layers. The two methods of analysis and root cause of crystalline lattice dislocation in a vertical DMOS transistor are discussed. TEM examination of implanted dopant interface was carried out in order to determine the nature and origin of lattice dislocations. A study1 indicates that lattice dislocations are generated by deep boron and arsenic implants that are not adequately annealed. In our analysis, these dislocations were observed as loop pairs causing low-level leakage that did not initially allow the part to fail. However, these silicon lattice dislocations do pose reliability issues.


Author(s):  
Jim Colvin ◽  
Heenal Patel ◽  
Timothy Hazeldine

Abstract Backside sample preparation is required by many post silicon validation techniques like FIB (Focused Ion Beam) circuit editing and optical probing using Photon Emission or Laser Stimulus methods [1]. In spite of many conventional methods of silicon thinning and polishing, some challenges remain as new packages are introduced. With large die packages the issue of cracking during backside thinning is arising due to package curvature stress. 3D profile methods will be shown in conjunction with thermal relaxation to alleviate silicon center to edge variance allowing sample prep of large areas with thicknesses below 10μm. Thinning and polishing methods will be shown to be interactive with the device heated; demonstrating both thermal stress reduction coupled with curvature reduction.


2005 ◽  
Vol 13 (1) ◽  
pp. 26-29 ◽  
Author(s):  
R.B. Irwin ◽  
A. Anciso ◽  
P.J. Jones ◽  
C. Patton

Sample preparation for Transmission Electron Microscopy (TEM) is usually performed such that the final sample orientation is either a cross section or a plan view of the bulk material, as shown schematically in Figure 1. The object of any sample preparation technique, for either of these two orientations, is to thin a selected volume of the sample from its initial bulk state to electron transparency, ~ 100nm thick. In doing so, the final sample must be mechanically stable, vacuum compatible, and, most of all, unchanged from the initial bulk material. Many techniques have been used to achieve this goal: cleaving, sawing, mechanical polishing, chemical etching, ion milling, focused ion beam (FIB) milling, and many others.


Sign in / Sign up

Export Citation Format

Share Document