Combined Metallurgical and Ceramic Coating in the Development of Tubular Ozone Generators

Author(s):  
R. Gadow ◽  
A. Killinger ◽  
A. Voss ◽  
C. Friedrich

Abstract This article discusses the development of a novel efficient ozonizer tube which cuts down the production costs and thus causes ozone to be an economically competitive alternative in comparison to traditionally used chlorine compounds. It describes the principle of ozone generation, provides information on improved ozonizer tubes, and presents the criteria for selecting thermal spray powders. The article investigates several types of thermal sprayed multilayer coatings, consisting of an Al/Si intermetallic interlayer and an oxide ceramic top coating on a borosilicate glass. It was found that the structural constitution namely, porosity and electrode surface roughness of the oxide layer, has a tremendous impact on the dielectric strength of the composite.

1996 ◽  
Vol 424 ◽  
Author(s):  
C-M Park ◽  
J-S Yoo ◽  
B-H Min ◽  
M-K Han

AbstractWe have fabricated a poly-Si TFT using a novel oxidation method, which improves the surface roughness at the interface between the poly-Si layer and the gate oxide layer. Compared with the poly-Si TFTs fabricated by the conventional oxidation method, the proposed poly-Si TFT exhibits the remarkable enhancement of the electrical parameters, such as the subthreshold swing and the threshold voltage. It is observed that the proposed poly-Si TFT has a higher dielectric strength and the device characteristics are not degraded significantly after an electrical stress. The improvement of the surface roughness at oxide/poly-Si interface is found to be critical to enhance the device performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Mohannad M. S. Al Bosta ◽  
Keng-Jeng Ma ◽  
Hsi-Hsin Chien

High emitter MAO ceramic coatings were fabricated on the Al 6061 alloy, using different bipolar anodic current densities, in an alkali silicate electrolyte. We found that, as the current density increased from 10.94 A/dm2 to 43.75 A/dm2, the layer thickness was increased from 10.9 μm to 18.5 μm, the surface roughness was increased from 0.79 μm to 1.27 μm, the area ratio of volcano-like microstructure was increased from 55.6% to 59.6%, the volcano-like density was decreased from 2620 mm−2 to 1420 mm−2, and the γ-alumina phase was decreased from 66.6 wt.% to 26.2 wt.%, while the α-alumina phase was increased from 3.9 wt.% to 27.6 wt.%. The sillimanite and cristobalite phases were around 20 wt.% and 9 wt.%, respectively, for 10.94 A/dm2 and approximately constant around 40 wt.% and less than 5 wt.%, respectively, for the anodic current densities 14.58, 21.88, and 43.75 A/dm2. The ceramic surface roughness and thickness slightly enhanced the IR emissivity in the semitransparent region (4.0–7.8 μm), while the existing phases contributed together to raise the emissivity in the opaque region (8.6–16.0 μm) to higher but approximately the same emissivities.


Author(s):  
Yong Zou ◽  
Yida Liu ◽  
Gongming Xin ◽  
Wen Liu ◽  
Lin Cheng

In this study, effects of surface conditions in terms of surface roughness and oxide layer, on adhesion of crystallization fouling on heat transfer surfaces were investigated. The experimental results showed that the surface roughness has no obvious effect on the adhesion of crystallization fouling. The polished sample did not present better anti-fouling properties compared to other rough samples. While the formation of Fe2O3 layer on the surface is proved to be able to accelerate the adhesion of calcite fouling with hexagonal structure, because there are similar crystalline structure and lattice parameter between the Fe2O3 and calcite fouling. Therefore, in order to improve the anti-fouling property of heat transfer surfaces, inhibiting the formation of oxide layer is more important than efforts to improve surface roughness.


2013 ◽  
Vol 581 ◽  
pp. 176-181 ◽  
Author(s):  
Ildikó Maňková ◽  
Jozef Beňo ◽  
Marek Vrabel'

Hard turning provides an alternative to grinding in some finishing operations. This paper deals with analysis of part surface finishing when turning hardened steel heat-treated on hardness of 46, 55 and 60 HRC with mixed oxide ceramic inserts. Average surface roughness Ra has been widely used in industry it is known that the single parameter Ra is inadequate to define the functionality of a surface. Two different surfaces with similar values of Ra can behave differently under loading conditions. The surface profile 2D and 3D parameters are assessed. The influence of workpiece hardness on surface roughness parameters and cutting force components is investigated. Results show that finish hard turning with mixed ceramic tool produces surface profile comparable to those produced by grinding.


2021 ◽  
Vol 21 (8) ◽  
pp. 4492-4497
Author(s):  
Eun Ae Shin ◽  
Gye Hyeon Kim ◽  
Jeyoung Jung ◽  
Sang Bong Lee ◽  
Chang Kee Lee

Hydrophobic ceramic coatings are used for a variety of applications. Generally, hydrophobic coating surfaces are obtained by reducing the surface energy of the coating material or by forming a highly textured surface. Reducing the surface energy of the coating material requires additional costs and processing and changes the surface properties of the ceramic coating. In this study, we introduce a simple method to improve the hydrophobicity of ceramic coatings by implementing a textured surface without chemical modification of the surface. The ceramic coating solution was first prepared by adding cellulose nanofibers (CNFs) and then applied to a polypropylene (PP) substrate. The surface roughness increased as the amount of added CNFs increased, increasing the water contact angle of the surface. When the amount of CNFs added was corresponding to 10% of the solid content, the surface roughness average of the area was 43.8 μm. This is an increase of approximately 140% from 3.1 μm (the value of the surface roughness of the surface without added CNFs). In addition, the water contact angle of the coating with added CNF increased to 145.0°, which was 46% higher than that without the CNFs. The hydrophobicity of ceramic coatings with added CNFs was better because of changes in the surface topography. After coating and drying, the CNFs randomly accumulated inside the ceramic coating layer, forming a textured surface. Thus, hydrophobicity was improved by implementing a rugged ceramic surface without revealing the surface of the CNFs inside the ceramic layer.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 394 ◽  
Author(s):  
Getinet Asrat Mengesha ◽  
Jinn P. Chu ◽  
Bih-Show Lou ◽  
Jyh-Wei Lee

The plasma electrolyte oxidation (PEO) process has been considered an environmentally friendly surface engineering method for improving the corrosion resistance of light weight metals. In this work, the corrosion resistance of commercially pure Al and PEO treated Al substrates were studied. The PEO layers were grown on commercially pure aluminum substrates using two different alkaline electrolytes with different addition concentrations of Si3N4 nanoparticles (0, 0.5 and 1.5 gL−1) and different duty cycles (25%, 50%, and 80%) at a fixed frequency. The corrosion properties of PEO coatings were investigated by the potentiodynamic polarization and electrochemical impedance spectroscopy test in 3.5 wt.% NaCl solutions. It showed that the weight gains, layer thickness and surface roughness of the PEO grown oxide layer increased with increasing concentrations of Si3N4 nanoparticles. The layer thickness, surface roughness, pore size, and porosity of the PEO oxide layer decreased with decreasing duty cycle. The layer thickness and weight gain of PEO coating followed a linear relationship. The PEO layer grown using the Na2B4O7∙10H2O contained electrolyte showed an excellent corrosion resistance and low surface roughness than other PEO coatings with Si3N4 nanoparticle additives. It is noticed that the corrosion performance of PEO coatings were not improved by the addition of Si3N4 nanoparticle in the electrolytic solutions, possibly due to its detrimental effect to the formation of a dense microstructure.


2019 ◽  
Vol 105 (5-6) ◽  
pp. 2151-2165 ◽  
Author(s):  
Adel Taha Abbas ◽  
Danil Yurievich Pimenov ◽  
Ivan Nikolaevich Erdakov ◽  
Tadeusz Mikolajczyk ◽  
Mahmoud Sayed Soliman ◽  
...  

Abstract Computer Numerical Control (CNC) face milling is commonly used to manufacture products from high-strength grade-H steel in both the automotive and the construction industry. The various milling operations for these components have key performance indicators: accuracy, surface roughness (Ra), and machining time for removal of a unit volume min/cm3 (Tm). The specified surface roughness values for machining each component is achieved based on the prototype specifications. However, poor adherence to specifications can result in the rejection of the machined parts, implying extra production costs and raw material wastage. An algorithm using an artificial neural network (ANN) with the Edgeworth-Pareto method is presented in this paper to optimize the cutting parameter in CNC face-milling operations. The set of parameters are adjusted to improve surface roughness and minimal unit-volume material removal rates, thereby reducing production costs and improving accuracy. An ANN algorithm is designed in Matlab, based on a 3–10-1 Multi-Layer Perceptron (MLP), which predicts the Ra of the workpiece surface to an accuracy of ± 5.78% within the range of the experimental angular spindle speed, feed rate, and cutting depth. An unprecedented Pareto frontier for Ra and Tm was obtained for the finished grade-H steel workpiece using an ANN algorithm that was then used to determine optimized cutting conditions. Depending on the production objective, one or the other of two sets of optimum machining conditions can be used: the first one sets a minimum cutting power, while the other sets a maximum Tm with a slight increase (under 5%) in milling costs.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Christian Girginov ◽  
Stephan Kozhukharov

Breakdown phenomena are investigated at continuous isothermal (20∘C) and galvanostatic (0.2–5 mA cm−2) anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF) electrolyte. From the kinetic -curves, the breakdown voltage () values are estimated, as well as the frequency and amplitude of oscillations of formation voltage () at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM). Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2), was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.


Sign in / Sign up

Export Citation Format

Share Document