Fatigue Behavior of Type 316L Stainless Steel Coated with Plasma-Sprayed Alumina in Corrosive Environment

Author(s):  
H. Kisuki ◽  
M. Sugano ◽  
T. Oshima ◽  
Y. Nasu ◽  
K. Okazaki ◽  
...  

Abstract Fatigue properties of the Al2O3 plasma-sprayed SUS316L stainless steel rod specimens coated on different spraying conditions have been studied in a physiological saline solution (0.9 % NaCl solution) to evaluate the potential of surgical implant application. Fatigue tests were conducted in push-pull loading at the stress ratio of R = -1, and frequency of 2 Hz. Microstructure related with fatigue damage was examined by SEM and TEM. The fatigue strength of Al2O3 plasma-sprayed metals significantly depended on spraying conditions: the effects of spraying on fatigue strength decreased with increasing the applied stress amplitude. As-blasted specimens were higher in fatigue strength than Al2O3 plasma-sprayed specimens. It was found that the plasma spraying had significant effects on fatigue crack growth behavior in the early stage of crack propagation. Fatigue cracks preferentially originated from dents that had been caused on the substrata metal surface subjected to grit-blasting. These results are discussed with both the compressive residual stresses due to the grit blasting which was carried out prior to plasma spraying and the corrosion-resistance of the alumina deposit.

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 476 ◽  
Author(s):  
Chao Gu ◽  
Min Wang ◽  
Yanping Bao ◽  
Fuming Wang ◽  
Junhe Lian

The fatigue property is significantly affected by the inner inclusions in steel. Due to the inhomogeneity of inclusion distribution in the micro-scale, it is not straightforward to quantify the effect of inclusions on fatigue behavior. Various investigations have been performed to correlate the inclusion characteristics, such as inclusion fraction, size, and composition, with fatigue life. However, these studies are generally based on vast types of steels and even for a similar steel grade, the alloy concept and microstructure information can still be of non-negligible difference. For a quantitative analysis of the fatigue life improvement with respect to the inclusion engineering, a systematic and carefully designed study is still needed to explore the engineering dimensions of inclusions. Therefore, in this study, three types of bearing steels with inclusions of the same types, but different sizes and amounts, were produced with 50 kg hot state experiments. The following forging and heat treatment procedures were kept consistent to ensure that the only controlled variable is inclusion. The fatigue properties were compared and the inclusions that triggered the fatigue cracks were analyzed to deduce the critical sizes of inclusions in terms of fatigue failure. The results show that the critical sizes of different inclusion types vary in bearing steels. The critical size of the spinel is 8.5 μm and the critical size of the calcium aluminate is 13.5 μm under the fatigue stress of 1200 MPa. In addition, with the increase of the cleanliness of bearing steels, the improvement of fatigue properties will reach saturation. Under this condition, further increasing of the cleanliness of the bearing steel will not contribute to the improvement of fatigue property for the investigated alloy and process design.


2018 ◽  
Vol 165 ◽  
pp. 06001 ◽  
Author(s):  
André Reck ◽  
Stefan Pilz ◽  
Ulrich Thormann ◽  
Volker Alt ◽  
Annett Gebert ◽  
...  

This study examined the fatigue properties of a newly developed cast and thermomechanical processed (β)-Ti-40Nb alloy for a possible application as biomedical alloy due to exceptional low Young’s modulus (64-73 GPa), high corrosion resistance and ductility (20-26%). Focusing on the influence of two microstructural states with fully recrystallized β-grain structure as well as an aged condition with nanometer-sized ω-precipitates, tension-compression fatigue tests (R=-1) were carried out under lab-air and showed significant differences depending on the β-phase stability under cyclic loading. Present ω- precipitates stabilized the β-phase against martensitic α’’ phase transformations leading to an increased fatigue limit of 288 MPa compared to the recrystallized state (225 MPa), where mechanical polishing and subsequent cyclic loading led to formation of α’’-phase due to the metastability of the β-phase. Additional studied commercially available (β)-Ti-45Nb alloy revealed slightly higher fatigue strength (300 MPa) and suggest a change in the dominating cyclic deformation mechanisms according to the sensitive dependence on the Nb-content. Further tests in simulated body fluid (SBF) at 37°C showed no decrease in fatigue strength due to the effect of corrosion and prove the excellent corrosion fatigue resistance of this alloy type under given test conditions.


Author(s):  
Zi Li ◽  
Bharath Basti Shenoy ◽  
L. Udpa ◽  
Yiming Deng

Abstract Martensitic grade stainless steel is generally used to manufacture steam turbine blades in power plants. The material degradation of those turbine blades, due to fatigue, will induce unexpected equipment damage. Fatigue cracks, too small to be detected, can grow severely in the next operating cycle and may cause failure before the next inspection opportunity. Therefore, a nondestructive electromagnetic technique, which is sensitive to microstructure changes in the material, is needed to provide a means to estimate the specimen’s fatigue life. To tackle these challenges, this paper presents a novel Magnetic Barkhausen noise (MBN) technique for garnering information relating to the material microstructure changes under test. The MBN signals are analyzed in time as well as frequency domain to infer material information that are influenced by the samples’ mate- rial state. Principal Component Analysis (PCA) is applied to reduce the dimensionality of feature data and extract higher order features. Afterwards, Probabilistic Neural Network (PNN) classifies the sample based on the percentage fatigue life to discover the most correlated MBN features to indicate the remaining fatigue life. Furthermore, one criticism of MBN is its poor repeatability and stability, therefore, Analysis of Variance (ANOVA) is carried out to analyze the uncertainty associated with MBN measurements. The feasibility of MBN technique is investigated in detecting early stage fatigue, which is associated with plastic deformation in ferromagnetic metallic structures. Experimental results demonstrate that the Magnetic Barkhausen Noise technique is a promising candidate for characterizing.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2107
Author(s):  
Zhangjianing Cheng ◽  
Xiaojian Cao ◽  
Xiaoli Xu ◽  
Qiangru Shen ◽  
Tianchong Yu ◽  
...  

The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion plays an important role in the transformation of nanograins. Ultrasonic surface impact improves the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy is approximately 7.0 MPa·m1/2.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 893 ◽  
Author(s):  
Yongyun Zhang ◽  
Ensheng Feng ◽  
Wei Mo ◽  
Yonghu Lv ◽  
Rui Ma ◽  
...  

316L stainless steel samples are fabricated by metal injection molding using water-atomized and gas-atomized powder with different oxygen contents. The influences of oxygen on the microstructural evolution and fatigue properties of the samples are investigated. The oxygen tends to react with Mn and Si to form oxide particles during sintering. The oxides hamper the densification process and result in decreased sintered density. Moreover, their existence reduces the Mn and Si dissolving into the base metal and compromises the solution strengthening effect. The oxides lead to stress concentration in the tensile and fatigue tests and become the initiation sites of fatigue cracks. After sintering, the samples made from the gas-atomized powder have a much lower oxygen content compared to those made from the water-atomized powder, therefore, exhibiting much better mechanical properties. The tensile strength, yield strength and the elongation of the samples made from the gas-atomized powder are 560 MPa, 205 MPa, and 58%, respectively. Their fatigue lives are about one order of magnitude longer than the samples made from water-atomized powder, and also longer than those fabricated by powder metallurgy and selective laser sintering which were reported in other studies.


Author(s):  
Hauwa Raji ◽  
Jamie Fletcher Woods

The fatigue behavior of welded components is complicated by many factors intrinsic to the nature of welded joints. The mechanical properties of the material, the welding process and position, the type and geometry of the weld and the residual stress distribution across the weld are a few factors affecting fatigue behavior. Published studies [1, 2] have shown that weld geometry is significantly important in determining the fatigue strength of the weld. For a given weld geometry, the fatigue strength is determined by the severity of the stress concentration at the weld toe or at weld defects and by the soundness of the weld metal. The effect of external weld geometry profile on the fatigue behavior of welded small bore super duplex umbilical steel tubes is investigated. Root cause analysis consisting of fractography, metallography and weld profile measurement is carried out on pairs of fatigue failure samples which were tested at the same stress range but failed at significantly different number of cycles. The samples are selected from Technip Umbilicals Ltd (TU) fatigue database. Following the failure analysis, weld geometric profile measurements are performed on fatigue test samples that were prepared for testing. The weld profile was measured in terms of the external weld cap height, weld width and external linear misalignment. Axial fatigue tests are carried out on these samples which are pre-strained before test to simulate the plastic bending cycles typically experienced during the manufacturing and installation processes prior to operational service. The fatigue tests results are interrogated together with the measured geometric data to identify trends and anomalies. Key weld geometric fatigue performance criteria are subsequently identified. For the welded super duplex stainless steel (SDSS) tubes studied, the height of the weld and the weld toe angle provided the best correlation with fatigue life — shorter lives were obtained from specimens with the highest weld aspect ratio (weld height to width) and lowest weld toe angle.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Fan ◽  
W. Tian ◽  
Y. Guo ◽  
Z. Sun ◽  
J. Xu

The microstructures of Ti6Al4V are complex and strongly affect its mechanical properties and fatigue behavior. This paper investigates the role of microstructure on mechanical and fatigue properties of thin-section Ti6Al4V sheets, with the aim of reviewing the effects of microstructure on fatigue properties where suboptimal microstructures might result following heat treatment of assemblies that may not be suited to further annealing, for example, following laser welding. Samples of Ti6Al4V sheet were subjected to a range of heat treatments, including annealing and water quenching from temperatures ranging from 650°C to 1050°C. Micrographs of these samples were inspected for microstructure, and hardness, 0.2% proof stress, elongation, and fracture strength were measured and attributed back to microstructure. Fractography was used to support the findings from microstructure and mechanical analyses. The strength ranking from high to low for the microstructures of thin Ti6Al4V sheets observed in this study is as follows: acicularα′martensite, Widmanstätten, bimodal, and equiaxed microstructure. The fatigue strength ranking from high to low is as follows: equiaxed, bimodal, Widmanstätten, and acicularα′martensite microstructure.


MRS Advances ◽  
2019 ◽  
Vol 4 (43) ◽  
pp. 2309-2317
Author(s):  
Fang Wang ◽  
Xue-Mei Luo ◽  
Dong Wang ◽  
Peter Schaaf ◽  
Guang-Ping Zhang

ABSTRACTFatigue properties of Mo/W multilayers with individual layer thickness (λ) of 5, 20, 50 and 100 nm on flexible polyimide substrates were investigated. The experimental results show that the fatigue resistance increases with decreasing λ from 100 nm to 20 nm, and reaches the maximum at λ=20 nm, and then decreases when further decreasing λ. Fatigue cracks of Mo/W multilayers with different λ were found to propagate along columnar grain boundary in the out-of-plane direction and along the boundary of cluster structures. The enhanced fatigue resistance is attributed to the larger cluster inclination angles and the more tortuous in-plane cracking paths.


Sign in / Sign up

Export Citation Format

Share Document