Process Maps for Plasma Spray Part I: Plasma-Particle Interactions

Author(s):  
D.L. Gilmore ◽  
R.A. Neiser ◽  
Y. Wan ◽  
S. Sampath

Abstract This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data.

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 770 ◽  
Author(s):  
Hongjun Ni ◽  
Jiaqiao Zhang ◽  
Shuaishuai Lv ◽  
Xingxing Wang ◽  
Yu Zhu ◽  
...  

As an industrial solid waste, the original aluminum ash (OAA) will cause serious pollution to the air and soil. How to reuse the OAA has been a research difficulty. Thus, a method of preparing a plasma spray powder using OAA is proposed. The OAA was hydrolyzed and ball milled, and the flowability of original aluminum ash spray powder (OAASP) was evaluated by the angle of repose. The coating properties were determined via analyzing the microstructure and the phase of the coating, and the effects of plasma spray parameters on the coating properties were investigated by the orthogonal experiment to optimize spray parameters. The results show that the angle of repose of OAASP after granulation was less than 40°, which met the requirements of plasma spraying. When the spraying current was 600 A, the spraying voltage was 60 V, the main gas flow was 33 slpm, and the powder flow rate was 22 g/min, and the prepared original aluminum ash coating (OAAC) had excellent comprehensive performance. After the spraying process parameters were optimized, the microhardness of the coating was 606.54 HV, which is about twice the hardness of the substrate; the abrasion rate was 12.86 × 10−3 g/min; the porosity was 0.16%; and the adhesive strength was 16 MPa. When the amount of Al2O3 added was 50%, the hardness of the coating was increased by 17.61%.


Author(s):  
Friederike C. Mund ◽  
Pericles Pilidis

Gas turbines for power generation are exposed to a variety of ambient conditions and are therefore bound to breathe contaminated airflow, thus degrading the engines internal gas path. In particular, accumulated debris on the compressor blades reduces engine efficiency. To recover this performance loss, online compressor washes may be performed. Cleaning fluid is injected through the nozzles upstream of the compressor to wash off the debris from the blades. This paper presents a numerical study of a generic compressor washing system based on an application case for a heavy duty gas turbine power plant. The inlet duct of the engine was modeled and droplet trajectories were calculated. Different spray patterns including single jet and full cone have been investigated for different ranges of injection velocity and droplet size. The spray angle was evaluated experimentally and was used to model the full cone spray pattern. The boundary conditions for the airflow were iterated with a performance simulation tool to match pressure loss and mass flow. To investigate the effect of different operating conditions on the airflow and spray distribution, an installation scenario of the engine at altitude on a hot summer day was modeled. The scenario was based on a review of plant installations and local meteorological conditions. Fluid concentration plots at the compressor inlet plane were evaluated for the different computational cases. Generally with lower injection momentum, the water droplets were significantly deflected by the main airflow. Higher injection velocity and droplet size reduced the effect of the main airflow. Different operating conditions and the significant change of air mass flow affected the spray distribution of the washing system at the compressor inlet. This can be compensated by adjusting the injection angles.


Author(s):  
J.R. Fincke ◽  
W.D. Swank ◽  
D.C. Haggard

Abstract Recently it has been suggested that the carrier gas jet interaction with the plasma can have a large effect on the resulting particle temperature. The postulated interaction is through deflection of the main plasma jet and by delaying the heating of particles by the formation of a "cold" gas bubble. We have examined the effect of the gas jet itself on the temperature of the particles by attempting to artificially form a cold gas bubble using a separate, closely oriented gas jet. The effect of the "twin" co-flowing jet was evaluated by measuring its effect on the mean and standard deviation of the particle injection velocity and the resulting spray pattern and particle temperature. Additionally we have used alternative carrier gases with similar density but with specific heats that are higher than argon by a factor of two. A measurable but minor effect on particle temperature is observed.


1989 ◽  
Vol 155 ◽  
Author(s):  
D. J. Varacalle ◽  
G. R. Smolik ◽  
G. C. Wilson ◽  
G. Irons ◽  
J. A. Walter

ABSTRACTAs part of an investigation of the dynamics that occur in the plume of a thermal spray torch, an experimental and analytical study of the deposition of yttria-stabilized zirconia has been accomplished. Experiments were conducted using a Taguchi fractional factorial design. Nominal spray parameters were: 900 A, 36 kW, 100 scfh argon primary gas flow, 47 scfh helium secondary gas flow, 11.5 scfh argon powder carrier gas flow, 3.5 lb/h powder feed rate, 3 in. spray distance, and an automated traverse rate of 20 in./s. The coatings were characterized for thickness, hardness, and microstructural features with optical microscopy, scanning electron microscopy, and x-ray diffraction. Attempts are made to correlate the features of the coatings with the changes in operating parameters. Numerical models of the physical processes in the torch column and plume were used to determine the temperature and flow fields. Computer simulations of particle injection (10 to 75 μm zirconia particles) are presented.


Author(s):  
Donald Wroblewski ◽  
Onomitra Ghosh ◽  
Annie Lum ◽  
David Willoughby ◽  
Michael VanHout ◽  
...  

Plasma spray for depositing thermal barrier coatings features large distributions of particle states that result in significant variations in coating quality. These variations arise from distributions of particle sizes, large spatial gradients of plasma thermal-fluid fields, and temporal variations of the arc and jet. This paper describes a simplified approach for studying how particle state distributions are influenced by torch conditions and powder distributions, and the implications for deposition rate monitoring and control. The approach combines a simplified jet model with a more detailed particle model. The important fluid-thermal spatial gradients in the plasma jet are captured using a three zone model: a core region, modeled by growth of a turbulent shear layer around a laminar core, a transition region and a similarity region. Plasma-particle momentum and thermal interactions, particle phase transitions, internal particle temperature gradients, and collapse of in-flight hollow particles have been modeled using a multi-lumped particle model. Effects of distributions of particle size, particle morphology, injection velocity, and carrier gas flow were studied for YSZ spray in an Ar-He plasma. The results provide guidance on sensor design and operation and on approaches for plume location control.


Author(s):  
J.R. Fincke ◽  
W.D. Swank ◽  
D.C. Haggard

Abstract The performance (particle velocity and velocity distribution) of a typical injector, and the resulting particle spray pattern for metallic (NiCrAlY) and ceramic (ZrO2) particles are examined as a function of carrier gas flow rate and the effect of varying the geometry immediately upstream of the injector. Injector performance is also examined for a 1:1 mixture of ceramic and metallic particles such as is used in the spraying of functionally graded materials. The upstream geometries tested included a 90° "tee," a 90° elbow, and a straight entrance. The elbow geometry was tested in both "up" and "down" orientation to determine the influence of gravity. The upstream geometry can alter the average particle injection velocity by 10-15% influencing both the spray pattern trajectory and width.


2016 ◽  
Vol 1812 ◽  
pp. 53-64
Author(s):  
E. Bautista Pérez ◽  
C.E. Cruz ◽  
Juan M. Salgado Lopez ◽  
J.A. Toscano

ABSTRACTIn this work, the effect of three principal and independent parameters of Atmospheric Plasma Spray on the properties of coatings deposited using mixtures of commercial powders of titanium dioxide (TiO2) and chromium oxide (Cr2O3) was studied. The results of this work are used for special applications on turbomachinery components such as wear protection in sliding seals and in steam valves for turbines, chemical protection for centrifugal compressor members, and special seal applications.The design of experiments (DoE) technique has proved to be very useful to study the influence factors and optimization. Pierlot et al. [1] demonstrated that the application of the Hadamard and two factorial design techniques are useful for the optimization of thermal spray processes. An example of the application of the DoE is the one mentioned by Murugan et al. [2]. In their work, a factorial design was used to study the interactions between gas flow, oxygen flow, powder rate and spray distance on the percentage of porosity and hardness of TiO2 - Cr2O3 composite coatings generated by High Velocity Oxy-Fuel.The ½ fractional two-level factorial DoE technique was used to analyze and optimize the Atmospheric Plasma Spray process parameters. In the current research, experiments were conducted varying the deposition velocity, gas flow and stand-off distance. The effect of these process variables were evaluated by thickness, hardness and microstructure analysis. In this study, an empirical relationship between process variables and response parameters was developed. The entire relationship was made using the results of the DoE.


Author(s):  
Jens Kamplade ◽  
Tobias Mack ◽  
Andre Küsters ◽  
Peter Walzel

The breakup process of threads from laminar operating rotary atomizer (LamRot) is in the scope of this investigation. A similarity trail is used to investigate the influence of the thread deformation within a cross-wind flow on the thread breakup process. The threads emerge from laminar open channel flow while the liquid viscosity, the flow rate, the pipe inclination towards the gravity as well as the cross-wind velocity is varied. The breakup length and drop size distribution are analyzed by a back-light photography setup. The results thus obtained are compared with results of previous examination by Schröder [1] and Mescher [2]. It is found that the breakup length decreases and that the drop size grows with rising cross-wind intensity, while the width of the drop size distribution increases. At the same operating conditions, the breakup length for laminar open channel flow is smaller compared to completely filled capillaries. In contrast to this observation, the drop size distribution remains nearly unchanged. The critical velocity for the transition from axisymmetric to wind-induced thread breakup was found to be smaller than for completely filled capillaries.


Sign in / Sign up

Export Citation Format

Share Document