Tensile Properties at High and Low Temperatures and at Room Temperature after High-Temperature Exposure

2004 ◽  
pp. 211-242

Abstract This data set contains the results of uniaxial tensile tests of a wide range of aluminum casting alloys conducted at high temperatures from 100 to 370 deg C, subzero temperatures from -269 to -28 deg C, and room temperature after holding at high temperatures from 100 to 370 deg C. In most cases, tests were made of several lots of material of each alloy and temper. The results for the several lots were then analyzed together graphically and statistically, and the averages were normalized to the room-temperature typical values. For some alloys, "representative" values (raw data) rather than typical values are provided.

2004 ◽  
pp. 243-252

Abstract This data set contains the results of uniaxial creep rupture tests for a wide range of aluminum casting alloys conducted at temperatures from 100 to 315 deg C. In most cases, tests were made of several lots of material of each alloy and temper, the results were analyzed, and the averages were normalized to the room-temperature typical values. For some alloys, "representative" values (raw data) rather than typical values are provided.


2004 ◽  
pp. 133-173

Abstract This data set presents aging response curves for a wide range of aluminum casting alloys. The aging response curves are of two types: room-temperature, or "natural," curves and artificial, or "high-temperature," curves. The curves in each group are presented in the numeric sequence of the casting alloy designation. The curves included are the results of measurements on individual lots considered representative of the respective alloys and tempers. The properties considered are yield strength, ultimate tensile strength, elongation, and Brinell hardness.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2007 ◽  
Vol 551-552 ◽  
pp. 539-544 ◽  
Author(s):  
S. Ding ◽  
Kai Feng Zhang ◽  
Guo Feng Wang

Nanocrystalline pure nickel (nc-Ni) was produced by pulse electrodeposition and its superplastic properties at and above room temperature were investigated. The electrodeposited nickel has a narrow grain size distribution with a mean grain size of 70nm. Uniaxial tensile tests at room temperature showed that nc-Ni has a limited plasticity but high tensile strength up to 1GPa at strain rates between 10-5 and 10-2s-1. However, when the temperature increased to 420 and higher, test specimens showed uniform deformation and the elongation value was larger than 200%. A maximum elongation value of 380% was observed at 450°C and a strain rate of 1.67x10-3s-1, SEM and TEM were used to examine the microstructures of the as-deposited and deformed specimens. The results indicated that fracture was caused by intergranular cracking and most cracks were originated from the brittle oxide formed during the tensile test. Grain coarsening was observed in the deformed specimen. The role of temperature and strain on grain growth was evaluated by comparing the microstructure of deformed samples with that of samples statically annealed. Deformation mechanism was discussed based upon the deformed microstructure and strain rate jump tests.


Author(s):  
Y. Huang ◽  
J. Huang ◽  
J. Cao

Magnesium alloy sheet has received increasing attention in automotive and aerospace industries. It is widely recognized that magnesium sheet has a poor formability at room temperature. While at elevated temperature, its formability can be dramatically improved. Most of work in the field has been working with the magnesium sheet after annealed around 350°C. In this paper, the as-received commercial magnesium sheet (AZ31B-H24) with thickness of 2mm has been experimentally studied without any special heat treatment. Uniaxial tensile tests at room temperature and elevated temperature were first conducted to have a better understanding of the material properties of magnesium sheet (AZ31B-H24). Then, limit dome height (LDH) tests were conducted to capture forming limits of magnesium sheet (AZ31B-H24) at elevated temperatures. An optical method has been introduced to obtain the stress-strain curve at elevated temperatures. Experimental results of the LDH tests were presented.


2016 ◽  
Vol 715 ◽  
pp. 153-158
Author(s):  
Ming Jun Piao ◽  
Hoon Huh ◽  
Ik Jin Lee ◽  
Hyung Won Kim ◽  
Lee Ju Park

This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials: 4130 steel (BCC); OFHC copper (FCC); and Ti6Al4V alloy (HCP). Uniaxial material tests are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1. Moreover, tensile tests are performed at temperature of 25 °C and 200 °C at strain rates of 10−3 s−1, 10−1 s−1, and 102 s−1, respectively. A modified Johnson–Cook type thermal softening model is utilized for the accurate application of the thermal softening effect at different strain rates. The hardening behaviors of the three materials are characterized by comparing the seven sequentially deformed shapes of the projectile from numerical and experimental results of Taylor impact tests.


2016 ◽  
Vol 879 ◽  
pp. 1489-1494
Author(s):  
Ildiko Peter ◽  
Christian Castella ◽  
Silvia Lombardo ◽  
Mario Rosso

Cost-effective, modified, self-hardening Al-based alloy is proposed for automotive and aircraft industries. AlZn10Si8Mg is produced by permanent mould casting technique, and the obtained material is re-melted to refine and modify its microstructure and to develop a mechanically more efficient alloy. Ti as grain refiner, in form of TiB, and modifier, in forms of AlSr, were added to the basic alloy composition. Microstructural analysis and impact toughness evaluation were performed at room temperature and up to 180°C. The results obtained confirm that the proposed alloy reveal good properties in the considered temperature range, and demonstrate their applicability for structural components development in the aforementioned areas and in a wide range of temperature.


2011 ◽  
Vol 82 ◽  
pp. 202-207 ◽  
Author(s):  
Isabella Colombo ◽  
Matteo Colombo ◽  
Anna Magri ◽  
Giulio Zani ◽  
Marco di Prisco

Textile Reinforced Mortar (TRM) is a composite made by fine grained matrix and glass fabric reinforcement. The main advantages of this material are the reinforcement orientation in the tensile stress direction, no concrete cover requirement against corrosion and the capability to produce thin and light weight elements. Special attention was given by researchers to the time dependent loss in strength of AR-glass reinforcement embedded in a cement based matrix. Some research has shown durability models to calculate the amount to the strength loss related to material, humidity and temperature. Nevertheless, the behaviour of TRM when exposed to high temperature requires further investigations. A suitable experimental programme was planned to investigate the behaviour of TRM when exposed to high temperatures. Uniaxial tensile tests were performed after thermal cycle on 400 mm x 70 mm specimens 6 mm thick, reinforced with 2 layer of AR-glass fabric. Several thermal thresholds (20, 200, 400 and 600°C) were considered for the mechanical characterization in fire condition. Thermal cycles were performed in an oven using a heating rate of 30°C/h up to the maximum temperature and by a cooling branch at 15°C/h after a stabilization phase at the maximum temperature.


2011 ◽  
Vol 311-313 ◽  
pp. 1769-1772
Author(s):  
Guo Dong Shi ◽  
Min Cong Liu ◽  
Sheng Jin

One multiscalar microlaminate (MSML) with 5 thick layers of NiCoCrAl whose thickness were different interspersed with 66 thin layer stacks of NiCoCrAl/YSZ was fabricated by EB-PVD. Uniaxial tensile testing was performed and fracture was examined using SEM. The results show that the microlaminate exhibits brittle-like behavior without macroscopic plastic deformation in room temperature tensile tests and the maximum engineering stress is 212MPa. Examination of fracture surfaces from the samples reveals that ceramic layers fail by intergranular brittle fracture between columns, but metal layers display features of both ductile and brittle fracture. It is also found that the thicknesses of metal layers have a great effect on their failure modes. And interfacial debonding and bridging metal layers are observed. Moreover, the resistance of crack propagation in the microlaminate is discussed.


2021 ◽  
Author(s):  
Cai Hu ◽  
Lionel Leotoing ◽  
Philippe Castany ◽  
Dominique Guines ◽  
Thierry Gloriant

Titanium alloys find a wide range of uses, especially in the aeronautic industry because of a combination of favorable specifications in terms of strength-to-weight ratio, corrosion resistance and performance at high temperature. If many works are interested in mechanical properties, as well as microstructure, few of them studied the effect of microstructure on formability. The aim of this work is to study the influence of the microstructure on the formability of β metastable titanium alloys (Ti21S) which are increasingly used in aeronautical applications. For this purpose, two different heat treatments are performed on Ti21S alloy in order to propose different microstructures. Based on uniaxial tensile tests, the elastoplastic hardening behavior and the limit strain in the uniaxial tension state are obtained and allow to determine one point of the forming limit curve (FLC). From these experimental observations, it is shown that the microstructure has an important effect on the formability: precipitation of α phase reduces the formability in comparison with full β phase microstructure. Finally, a finite element M-K model is used and calibrated to predict the whole FLC for the different investigated microstructures.


Sign in / Sign up

Export Citation Format

Share Document