scholarly journals S-locus genotyping on stone fruits in Hungary: a review of the most recent achievements

2014 ◽  
Vol 20 (1-2) ◽  
Author(s):  
J. Halász

Central Europe can be taken as a geographical and historical connection zone between the western growing countries and Asian gene centres of Prunus tree fruits. The determination of the S-genotype of stone fruit (mainly almond, plum, cherries and apricot) cultivars and landraces has both practical and theoretical significance. Our group has allocated complete S-genotypes for more than 200 cultivars and selections of almond, Japanese plum, sweet cherry and apricot. Among Eastern European almond cultivars, two novel cross-incompatibility groups (CIGs) were identified. S-alleles of a related species were also shown in P. dulcis accessions; a fact seems to be indicative of introgressive hybridization. Our results with Japanese plum clarified and harmonized two different allele nomenclatures and formed a basis for intensive international studies. In apricot, a total of 13 new S-alleles were identified from Eastern European and Asian accessions. Many Turkish and North African cultivars were classified into new CIGs, III–XVII. Results suggest that the mutation rendering apricot self-compatible might have occurred somewhere in south-east of Turkey and we were successful to confirm the presumed Irano-Caucasian origin of North African apricots based on the geographical distribution of S-alleles. In sweet cherry, new alleles have been identified and characterized from Turkish cultivars and selections. In addition, wild sweet cherry and sour cherry S-alleles were also shown indicating a a broader gene pool in Turkey as compared with international cultivars. We also used S-genotype information of Ukrainian sweet cherry cultivars to design crosses in a functional breeding program. Our results exhibit an increased number of S-alleles in tree fruit accessions native to the regions from Eastern Europe to Central Asia, which can be used to develop S-genotyping methods, to assist cultivation and draw inferences for crop evolution.

Author(s):  
Agnes Kivistik ◽  
Liina Jakobson ◽  
Kersti Kahu ◽  
Kristiina Laanemets

AbstractThe pollination of self-incompatible diploid sweet cherry is determined by the S-locus alleles. We resolved the S-alleles of 50 sweet cherry cultivars grown in Estonia and determined their incompatibility groups, which were previously unknown for most of the tested cultivars. We used consensus primers SI-19/20, SI-31/32, PaConsI, and PaConsII followed by allele-specific primers and sequencing to identify sweet cherry S-genotypes. Surprisingly, 48% (24/50) of the tested cultivars, including 17 Estonian cultivars, carry the rare S-allele S17, which had initially been described in wild sweet cherries in Belgium and Germany. The S17-allele in Estonian cultivars could originate from ‘Leningradskaya tchernaya’ (S6|S17), which has been extensively used in Estonian sweet cherry breeding. Four studied cultivars carrying S17 are partly self-compatible, whereas the other 20 cultivars with S17 have not been reported to be self-compatible. The recommended pollinator of seven self-incompatible sweet cherries is of the same S-genotype, including four with S17-allele, suggesting heritable reduced effectiveness of self-infertility. We classified the newly genotyped sweet cherry cultivars into 15 known incompatibility groups, and we proposed four new incompatibility groups, 64–67, for S-locus genotypes S3|S17, S4|S17, S5|S17, and S6|S17, respectively, which makes them excellent pollinators all across Europe. Alternatively, the frequency of S17 might be underestimated in Eastern European populations and some currently unidentified sweet cherry S-alleles might potentially be S17.


2010 ◽  
Vol 22 (2) ◽  
pp. 51-57 ◽  
Author(s):  
Mirosława Cieślińska ◽  
Halina Morgaś

Abstract A survey was carried out on 38 commercial and experimental stone fruit orchards located in major growing areas of stone fruit trees in Poland to determine the incidence of lesser known viruses and phytoplasmas. Leaf samples from 145 sweet cherry and 102 sour cherry trees were tested for Little cherry virus 1 (LChV-1), Little cherry virus 2 (LChV-2), Cherry green ring mottle virus (CGRMV), Cherry mottle leaf virus (CMLV), and Cherry necrotic rusty mottle virus (CNRMV) using RT-PCR. Sixty samples collected from peach and 20 apricot trees were also tested for CGRMV. Eleven out of 145 sweet cherry and three out of 102 sour cherry trees were infected by LChV-1. CGRMV was detected in 10 sweet cherry, four sour cherry, 14 peach and two apricot trees. No LChV-2, CMLV and CNRMV were detected in any of the tested trees. Phloem tissue from samples of shoots collected from 145 sweet cherry, 102 sour cherry, 128 peach, 37 apricot, five nectarine and 20 European as well as Japanese plum trees were tested for phytoplasmas. The nested PCR of the extracted DNA with universal and specific primer pairs showed the presence of phytoplasmas in six sweet cherry, three sour cherry, nine peach, four apricot, one nectarine and three Japanese plum trees. The RFLP patterns of 16S rDNA fragments after digestion with RsaI, MseI, AluI, and SspI endonucleases indicated that selected stone fruit trees were infected by two distinct phytoplasmas belonging to the apple proliferation group. The stone fruit trees infected by LChV-1, CGRMV and phytoplasmas were grown in orchards localised in all seven regions


2005 ◽  
Vol 40 (2) ◽  
pp. 149-157 ◽  
Author(s):  
M. W. Brown

Host utilization by plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), among 8 species of tree fruit was tested under natural orchard conditions in eastern West Virginia. Cohorts of fruit on apricot, European plum, Japanese plum, peach, sweet cherry, sour cherry, pear and apple were examined periodically from just after fruit set to harvest for the appearance of oviposition injury. Percentage of dropped fruit with plum curculio oviposition also was recorded. Fruit also was harvested and evaluated for the presence of oviposition scars, adult feeding, and internal larvae. Apricot had the highest percentage of injury followed by Japanese plum, European plum, apple, peach, sweet cherry, sour cherry and pear. In plum, there was in increase in the percentage of fruit on the tree with oviposition injury from fruit set to harvest; whereas, with the other fruit the percentage of injury on the tree remained relatively constant beyond about a month after fruit set.


2019 ◽  
Vol 1 (4) ◽  
pp. 28-34
Author(s):  
Rahima I. Ismoilova ◽  
Sodzhida D. Umarova

This paper is about studying the rootstocks for stone fruit breeds (sweet cherry) in condition of Hissar valley in Tajikistan. Each type of rootstock has its own biological characteristics and imposes specific requirements for growing and development, both during reproduction in the mother plantation and during the growth of trees. For example, the root system in sour cherry is more superficial that of wild sweet cherry. Therefore, the care of trees grafted on sour cherry and wild cherry and of mother plantation bushes of these rootstocks cannot be same. Besides, there are very significant differences among the individual groups of rootstocks. Wild cherry, Mahaleb cherry and Lubskaya cherry are used as rootstocks in the conditions of the Hissar Valley in Tajikistan. High specificity of sweet cherry cultivar varieties depends on the rootstocks. Phenological observation were carried out in our experiments during years 2013-2018 in order to study their winter resistance, yield capacity and fruit quality. The same care for root and grafted plants was carried out during the entire observation period. At the same time a certain ratio between the leaf system of the rootstock and the graft was maintained by trimming the crown. As a result of the evolution and selection, we have identified the wild cherry forms which are distinguished by the highest yields. The most valuable cultivar varieties are Napoleon cherry and Bagration cherry. Compotes made of these varieties have received high evaluation in tasting.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e48305 ◽  
Author(s):  
Cameron Peace ◽  
Nahla Bassil ◽  
Dorrie Main ◽  
Stephen Ficklin ◽  
Umesh R. Rosyara ◽  
...  

1993 ◽  
Vol 73 (3) ◽  
pp. 847-855 ◽  
Author(s):  
H. A. Quamme ◽  
R. T. Brownlee

Early performance (6–8 yr) of Macspur McIntosh, Golden Delicious, and Spartan apple (Malus domestica Borkh.); Fairhaven peach [Prunus persica (L.) Batsch.]; Montmorency sour cherry (P. cerasus L.); and Lambert sweet cherry (P. avium L.) trees, tissue cultured (TC) on their own roots, was compared with that of the same cultivars budded on commercially used rootstocks. TC trees of all apple cultivars were similar in size to trees budded on Antonovka seedling or M.4 and exceeded the size of trees budded on M.26. They were delayed in flowering and in cropping compared with trees budded on M.26 and M.4. No difference in titratable acidity, soluble solids, flesh firmness, weight, flavor, and color between fruit from TC trees and from trees on M.4 and Antonovka seedlings was detected in 1 yr of measurement. However, fruit from TC Golden Delicious was more russeted and fruit from TC Spartan had more soluble solids. The difference in fruit appearance between TC and budded trees may result from a root-stock effect or a difference in budwood source, because Spartan fruit from trees on M.4 was more russeted than Spartan fruit from TC trees, but was not different from Spartan fruit from trees on Antonovka seedling. Trees of Macspur McIntosh on TC M.26 and on stool-layered M.26 were similar in size and yield efficiency. TC Fairhaven was larger in size than Fairhaven on Siberian C seedling, but was less yield efficient. No difference in fruit size, flesh firmness, or color was detected between fruit harvested from peach trees on the different roots. Montmorency and Lambert TC and on F12/1 were similar in tree size, respectively, but Montmorency and Lambert TC were more yield efficient than on F12/1. Fruit of TC Lambert was lighter in color and had higher titratable acidity than that of Lambert on F12/1, perhaps a result of earlier fruit maturity. Key words: Apple, peach, sweet cherry, sour cherry, self-rooted, rootstocks


2021 ◽  
Author(s):  
Sinem Ozturk Erdem ◽  
Neriman Beyhan ◽  
Leila Demirsoy

2010 ◽  
Vol 16 (1) ◽  
Author(s):  
A. Sass-Kiss ◽  
M. Tóth-Markus ◽  
H. G. Daood ◽  
D. Bánáti ◽  
J. Nyéki ◽  
...  

The goal of the present work was to compare different sweet and sour cherry cultivars and cultivation methods (bio/integrated) with respect to polyphenol content and antioxidant activity. The concentration of total polyphenols ranged between 880–1050 mg kg-1 of fresh fruit, whereas antioxidant activity expressed as TEAC was found to be between 5.4 and 10.3 mmol kg-1 for the sweet cherry cultivars examined. In case of sour cherry the level of polyphenols ranged between 1283 and 3490 mg/kg fresh edible part of the fruit. Antioxidant activity was recorded between 15–32 mmol kg-1 for the different sour cherry cultivars included in this work. After one-month storage at low temperature, the total phenols and antioxidant activity decreased by 2–40% in the sour cherry cultivars studied. The anthocyanin content in cherry cultivars was less (131–312 mg kg-1) than the135–1893 mg kg-1 found in sour cherries. Anthocyanin level was higher in samples produced under organic farming conditions than in those produced with integrated cultivation.


2010 ◽  
Vol 16 (3) ◽  
Author(s):  
N. Papp ◽  
J. Nyéki ◽  
Z. Szabó ◽  
É. Stefanovits-Bányai ◽  
T. Szabó ◽  
...  

Sour cherry (Prunus cerasus L.) cultivars grown in Hungary are of local origin while most sweet cherry cultivars in Hungary are introduced from other countries.A great phenotypic variability is displayed by both species. In the present study, we analyzed 10 sour and 9 sweet cherry cultivars for their antioxidant capacity, total polyphenolics (TPC) and total anthocyanin (TMAC) contents. In general, sour cherries showed higher levels of antioxidant capacity, TPC and TMAC. The anthocyanin contents varied from 0.16 to 6.85 and 1.41 to 127.56 mg/100 g for sweet and sour cherries, respectively. However, TMAC generally seems to have a limited influence on the antioxidant capacity of cherries.An amarelletype sour cherry, ‘Pipacs 1’ showed the highest antioxidant capacity (21.21mmolAA/l) and TPC (44.07mgGA/l) in contrast to its lowanthocyanin content. The detected diversity presents a choice that can satisfy different consumer preferences, and meet specific nutritional requirements.


2018 ◽  
Vol 15 (2) ◽  
pp. 150-158
Author(s):  
Ya. I. Ivanovych ◽  
N. V. Tryapitsyna ◽  
K. M. Udovychenko ◽  
R. A. Volkov

Aim. Ukrainian breeders have created a large number of sweet cherry cultivars, which still remain almost unexplored at the molecular level. The aim of our study was to identify the self-incompatibility alleles (S-alleles) in Ukrainian sweet cherry cultivars and landraces, and to elucidate, to which cross-incompatibility group the cultivars belong. Methods. The PCR was conducted using consensus primers to the first and second introns of S-RNAse gene and to the single intron of SFB gene. The electrophoretic analysis of the PCR products of the second intron of S-RNAse was carried out in agarose gel, whereas detection of fluorescently labeled DNA fragments of the first S-RNAse intron and the SFB intron was performed using a genetic analyzer. Results. The S-alleles of 25 Ukrainian sweet cherry cultivars and 10 landraces were identified. The S-alleles frequencies and affiliation of cultivars and landraces to the groups of cross-incompatibility were determined. The obtained data can be used in breeding programs and by planning of industrial plantings. Conclusions. In the study, 12 different S-alleles and 79 S-haplotypes were identified. The S1, S3, S4, S5, S6 and S9 alleles are the most widespread among Ukrainian sweet cherry cultivars and landraces. The high frequencies of S5 and especially of S9 alleles are characteristic for the Ukrainian cultivars and distinguish them from other European ones. For the Ukrainian sweet cherry cultivars, the XXXVII (S5S9) cross-incompatibility group appeared to be the most numerous.Keywords: Ukrainian sweet cherry cultivars, S-locus, Sgenotypes, self- and cross-incompatibility, Prunus avium.


Sign in / Sign up

Export Citation Format

Share Document